Home
Class 14
MATHS
If cosA+cos^(2)A=1, then find the value ...

If `cosA+cos^(2)A=1`, then find the value of `sin^(8)A+2sin^(6)A+sin^(4)A`.

A

`-1`

B

5

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos A + \cos^2 A = 1 \) and find the value of \( \sin^8 A + 2 \sin^6 A + \sin^4 A \), we can follow these steps: ### Step 1: Rearranging the equation Start with the given equation: \[ \cos A + \cos^2 A = 1 \] Rearranging gives: \[ \cos^2 A + \cos A - 1 = 0 \] ### Step 2: Solving the quadratic equation This is a quadratic equation in terms of \( \cos A \). We can apply the quadratic formula: \[ \cos A = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = 1, c = -1 \). Plugging in these values: \[ \cos A = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 3: Finding \( \sin^2 A \) Using the identity \( \sin^2 A + \cos^2 A = 1 \), we can express \( \sin^2 A \) in terms of \( \cos A \): \[ \sin^2 A = 1 - \cos^2 A \] Now, we need to find \( \cos^2 A \): \[ \cos^2 A = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{(-1 + \sqrt{5})^2}{4} = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] Thus, \[ \sin^2 A = 1 - \frac{3 - \sqrt{5}}{2} = \frac{2 - (3 - \sqrt{5})}{2} = \frac{-1 + \sqrt{5}}{2} \] ### Step 4: Calculating \( \sin^4 A \) Now we calculate \( \sin^4 A \): \[ \sin^4 A = \left(\sin^2 A\right)^2 = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{(-1 + \sqrt{5})^2}{4} = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] ### Step 5: Calculating \( \sin^6 A \) and \( \sin^8 A \) Next, we find \( \sin^6 A \): \[ \sin^6 A = \sin^4 A \cdot \sin^2 A = \left(\frac{3 - \sqrt{5}}{2}\right) \cdot \left(\frac{-1 + \sqrt{5}}{2}\right) = \frac{(3 - \sqrt{5})(-1 + \sqrt{5})}{4} \] Calculating this gives: \[ = \frac{-3 + 3\sqrt{5} + \sqrt{5} - 5}{4} = \frac{-8 + 4\sqrt{5}}{4} = -2 + \sqrt{5} \] Now, for \( \sin^8 A \): \[ \sin^8 A = \sin^4 A \cdot \sin^4 A = \left(\frac{3 - \sqrt{5}}{2}\right)^2 = \frac{(3 - \sqrt{5})^2}{4} = \frac{9 - 6\sqrt{5} + 5}{4} = \frac{14 - 6\sqrt{5}}{4} = \frac{7 - 3\sqrt{5}}{2} \] ### Step 6: Putting it all together Now we can compute \( \sin^8 A + 2 \sin^6 A + \sin^4 A \): \[ \sin^8 A + 2 \sin^6 A + \sin^4 A = \left(\frac{7 - 3\sqrt{5}}{2}\right) + 2(-2 + \sqrt{5}) + \left(\frac{3 - \sqrt{5}}{2}\right) \] Calculating this gives: \[ = \frac{7 - 3\sqrt{5}}{2} - 4 + 2\sqrt{5} + \frac{3 - \sqrt{5}}{2} \] Combining terms: \[ = \frac{(7 + 3) - 4 \cdot 2 + (-3\sqrt{5} + 2\sqrt{5} - \sqrt{5})}{2} = \frac{10 - 4}{2} = \frac{6}{2} = 3 \] ### Final Answer Thus, the value of \( \sin^8 A + 2 \sin^6 A + \sin^4 A \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If cosA+cos^(2)A=1 , then find the value of sin^(12)A+3sin^(10)A+3sin^(8)A+sin^(6)A+sin^(4)A+sin^(2)A .

If cos A+cos^(2)A=1, find the value of sin^(2)A+sin^(4)A

If sinA=cosA,then find the value of sin 2A.

The value of 2sinA cos^(3)A -2sin^(3)A cosA is

If 2cos x+sin x=1, then find the value of 7cos x+6sin x

If sinA+sin^(2)A=1 , then find the value of cos^(12)A+3cos^(10)A+3cos^(8)A+cos^(6)A+cos^(4)A+cos^(2)A .

If sin x+sin^(2)x=1 then write the value of cos^(8)x+2cos^(6)x+cos^(4)x

" If "cos x+cos^(2)x+cos^(3)x=1" ,then the value of "sin^(6)x-4sin^(4)x+8sin^(2)x" is"

If sin A+sin^(2)A+sin^(3)A=1, then find the value of cos^(6)A-4cos^(4)A+8cos^(2)A

If cosA+cos^(2)A=1 , then prove that sin^(2)A+sin^(4)A=1 .

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If sintheta+sin^(2)theta=1, then find the value of cos^(2)theta+cos^(4...

    Text Solution

    |

  2. If costheta+cos^(2)theta=1, then find the value of sin^(4)theta+sin^(2...

    Text Solution

    |

  3. If cosA+cos^(2)A=1, then find the value of sin^(8)A+2sin^(6)A+sin^(4)A...

    Text Solution

    |

  4. If cosA+cos^(2)A=1, then find the value of sin^(12)A+3sin^(10)A+3sin^(...

    Text Solution

    |

  5. If sinA+sin^(2)A=1, then find the value of cos^(12)A+3cos^(10)A+3cos^(...

    Text Solution

    |

  6. If cos^(2)x+cos^(4)x=1, then find the value of tan^(2)x+tan^(4)x.

    Text Solution

    |

  7. If 3sinx+4cosx=2, then find the value of 3cosx-4sinx.

    Text Solution

    |

  8. If costheta-sintheta=sqrt(2)costheta, then find the value of costheta+...

    Text Solution

    |

  9. If sintheta+costheta=sqrt(2), then find the value of sintheta-costheta...

    Text Solution

    |

  10. If sintheta+costheta=pandsectheta+cosectheta=q, then q(p^(2)-1)=?

    Text Solution

    |

  11. If T(n)=sin^(n)theta+cos^(n)theta then (T(3)-T(5))/(T(1))=?

    Text Solution

    |

  12. If x=acos^(3)theta,y=bsin^(3)theta then ((x)/(a))^((2)/(3))+((y)/(b))^...

    Text Solution

    |

  13. If x=asec^(n)thetaandy=btan^(n)theta, then find the value of theta.

    Text Solution

    |

  14. If tan^(5)thetatan^(5)5theta=1, then find the value of tan^(4)3theta.

    Text Solution

    |

  15. If tantheta.tan2theta=1, then find the value of sin^(2)2theta+tan^(2)2...

    Text Solution

    |

  16. If costhetacosec23^(@)=1, the value of theta is

    Text Solution

    |

  17. If sin(x+y)=cos(x-y), then find the value of cos^(2)x.

    Text Solution

    |

  18. If x,y are positive acute angles, x+ylt90^(@) and sin(2x-20^(@))=cos(2...

    Text Solution

    |

  19. If A and B are complementary angles, find the value of sqrt((tanAtanB+...

    Text Solution

    |

  20. A and B are complementary angles, then find the value of sinAcosB+cosA...

    Text Solution

    |