Home
Class 14
MATHS
If cosA+cos^(2)A=1, then find the value ...

If `cosA+cos^(2)A=1`, then find the value of `sin^(12)A+3sin^(10)A+3sin^(8)A+sin^(6)A+sin^(4)A+sin^(2)A`.

A

`-1`

B

5

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos A + \cos^2 A = 1 \) and find the value of \( \sin^{12} A + 3\sin^{10} A + 3\sin^8 A + \sin^6 A + \sin^4 A + \sin^2 A \), we will follow these steps: ### Step 1: Solve for \( \cos A \) Starting with the equation: \[ \cos A + \cos^2 A = 1 \] We can rearrange this to form a quadratic equation: \[ \cos^2 A + \cos A - 1 = 0 \] Let \( x = \cos A \). The equation becomes: \[ x^2 + x - 1 = 0 \] ### Step 2: Use the quadratic formula We can solve for \( x \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = 1, c = -1 \): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] Thus, we have two possible values for \( \cos A \): \[ \cos A = \frac{-1 + \sqrt{5}}{2} \quad \text{or} \quad \cos A = \frac{-1 - \sqrt{5}}{2} \] Since \( \cos A \) must be in the range \([-1, 1]\), we discard \( \frac{-1 - \sqrt{5}}{2} \) as it is less than -1. Therefore: \[ \cos A = \frac{-1 + \sqrt{5}}{2} \] ### Step 3: Find \( \sin^2 A \) Using the identity \( \sin^2 A + \cos^2 A = 1 \): \[ \sin^2 A = 1 - \cos^2 A \] Calculating \( \cos^2 A \): \[ \cos^2 A = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] Thus: \[ \sin^2 A = 1 - \frac{3 - \sqrt{5}}{2} = \frac{2 - (3 - \sqrt{5})}{2} = \frac{-1 + \sqrt{5}}{2} \] ### Step 4: Substitute \( \sin^2 A \) into the expression Let \( y = \sin^2 A = \frac{-1 + \sqrt{5}}{2} \). We need to find: \[ y^6 + 3y^5 + 3y^4 + y^3 + y^2 + y \] ### Step 5: Factor the expression Notice that: \[ y^6 + 3y^5 + 3y^4 + y^3 + y^2 + y = (y^2 + y)^3 \] This is derived from the binomial expansion. ### Step 6: Calculate \( (y^2 + y)^3 \) First, calculate \( y^2 \): \[ y^2 = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] Now calculate \( y^2 + y \): \[ y^2 + y = \frac{3 - \sqrt{5}}{2} + \frac{-1 + \sqrt{5}}{2} = \frac{3 - \sqrt{5} - 1 + \sqrt{5}}{2} = \frac{2}{2} = 1 \] Thus: \[ (y^2 + y)^3 = 1^3 = 1 \] ### Final Answer The value of \( \sin^{12} A + 3\sin^{10} A + 3\sin^8 A + \sin^6 A + \sin^4 A + \sin^2 A \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If cosA+cos^(2)A=1 , then find the value of sin^(8)A+2sin^(6)A+sin^(4)A .

If cos A+cos^(2)A=1, find the value of sin^(2)A+sin^(4)A

If cos x + cos^(2)x =1 , then the value of sin^(12)x + 3 sin^(10)x + 3sin^(8)x + sin^(6)x -1 is:

If sinA+sin^(2)A=1 , then find the value of cos^(12)A+3cos^(10)A+3cos^(8)A+cos^(6)A+cos^(4)A+cos^(2)A .

If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10) x + 3 sin^(8) x + sin^(6) x -1 is

Find the value of sin1^(@).sin2^(@).sin3^(@)…sin180^(@) .

If sin x+sin^(2)x=1, then find the value of cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1

The value of sin^(-1)(sin12)+sin^(-1)(cos12)=

sin^(6)A + cos^(6)A + 3sin^(2)A.cos^(2)A=

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If costheta+cos^(2)theta=1, then find the value of sin^(4)theta+sin^(2...

    Text Solution

    |

  2. If cosA+cos^(2)A=1, then find the value of sin^(8)A+2sin^(6)A+sin^(4)A...

    Text Solution

    |

  3. If cosA+cos^(2)A=1, then find the value of sin^(12)A+3sin^(10)A+3sin^(...

    Text Solution

    |

  4. If sinA+sin^(2)A=1, then find the value of cos^(12)A+3cos^(10)A+3cos^(...

    Text Solution

    |

  5. If cos^(2)x+cos^(4)x=1, then find the value of tan^(2)x+tan^(4)x.

    Text Solution

    |

  6. If 3sinx+4cosx=2, then find the value of 3cosx-4sinx.

    Text Solution

    |

  7. If costheta-sintheta=sqrt(2)costheta, then find the value of costheta+...

    Text Solution

    |

  8. If sintheta+costheta=sqrt(2), then find the value of sintheta-costheta...

    Text Solution

    |

  9. If sintheta+costheta=pandsectheta+cosectheta=q, then q(p^(2)-1)=?

    Text Solution

    |

  10. If T(n)=sin^(n)theta+cos^(n)theta then (T(3)-T(5))/(T(1))=?

    Text Solution

    |

  11. If x=acos^(3)theta,y=bsin^(3)theta then ((x)/(a))^((2)/(3))+((y)/(b))^...

    Text Solution

    |

  12. If x=asec^(n)thetaandy=btan^(n)theta, then find the value of theta.

    Text Solution

    |

  13. If tan^(5)thetatan^(5)5theta=1, then find the value of tan^(4)3theta.

    Text Solution

    |

  14. If tantheta.tan2theta=1, then find the value of sin^(2)2theta+tan^(2)2...

    Text Solution

    |

  15. If costhetacosec23^(@)=1, the value of theta is

    Text Solution

    |

  16. If sin(x+y)=cos(x-y), then find the value of cos^(2)x.

    Text Solution

    |

  17. If x,y are positive acute angles, x+ylt90^(@) and sin(2x-20^(@))=cos(2...

    Text Solution

    |

  18. If A and B are complementary angles, find the value of sqrt((tanAtanB+...

    Text Solution

    |

  19. A and B are complementary angles, then find the value of sinAcosB+cosA...

    Text Solution

    |

  20. If theta is an acute angle and sintheta=costheta, then find the value ...

    Text Solution

    |