Home
Class 14
MATHS
If cos^(2)x+cos^(4)x=1, then find the va...

If `cos^(2)x+cos^(4)x=1`, then find the value of `tan^(2)x+tan^(4)x`.

A

0

B

3

C

1

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^2 x + \cos^4 x = 1 \) and find the value of \( \tan^2 x + \tan^4 x \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos^2 x + \cos^4 x = 1 \] ### Step 2: Substitute \( y = \cos^2 x \) Let \( y = \cos^2 x \). Then the equation becomes: \[ y + y^2 = 1 \] ### Step 3: Rearrange the equation Rearranging gives us: \[ y^2 + y - 1 = 0 \] ### Step 4: Solve the quadratic equation We can solve this quadratic equation using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = 1, c = -1 \): \[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ y = \frac{-1 \pm \sqrt{1 + 4}}{2} \] \[ y = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 5: Determine the valid solution for \( y \) Since \( y = \cos^2 x \) must be non-negative, we take the positive root: \[ y = \frac{-1 + \sqrt{5}}{2} \] ### Step 6: Find \( \tan^2 x \) Recall that: \[ \tan^2 x = \frac{\sin^2 x}{\cos^2 x} = \frac{1 - \cos^2 x}{\cos^2 x} \] Substituting \( y \) into this gives: \[ \tan^2 x = \frac{1 - y}{y} = \frac{1 - \frac{-1 + \sqrt{5}}{2}}{\frac{-1 + \sqrt{5}}{2}} \] \[ = \frac{\frac{3 - \sqrt{5}}{2}}{\frac{-1 + \sqrt{5}}{2}} = \frac{3 - \sqrt{5}}{-1 + \sqrt{5}} \] ### Step 7: Find \( \tan^4 x \) Now, we need \( \tan^4 x \): \[ \tan^4 x = \left(\tan^2 x\right)^2 = \left(\frac{3 - \sqrt{5}}{-1 + \sqrt{5}}\right)^2 \] ### Step 8: Combine \( \tan^2 x + \tan^4 x \) Now we can find \( \tan^2 x + \tan^4 x \): \[ \tan^2 x + \tan^4 x = \tan^2 x \left(1 + \tan^2 x\right) \] Using the identity \( 1 + \tan^2 x = \sec^2 x = \frac{1}{\cos^2 x} \): \[ = \tan^2 x \cdot \frac{1}{y} \] ### Step 9: Substitute \( y \) back Substituting \( y = \frac{-1 + \sqrt{5}}{2} \): \[ \tan^2 x + \tan^4 x = \frac{(3 - \sqrt{5})}{(-1 + \sqrt{5})} \cdot \frac{2}{-1 + \sqrt{5}} \] ### Final Result After simplifying, we find: \[ \tan^2 x + \tan^4 x = 2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4 , then the value of 2 tan^(2)x is

If tan ^(-1)x=(3)/(4), then find the value of cos^(-1)x

Let cos(2 tan^(-1) x)=1/2 then the value of x is

If cos x=(4)/(5) and x is acute find the value of tan 2x.

If (sin x + cos x)/(sin x - cos x) = (6)/(5) , then the value of (tan^(2) x + 1)/(tan^(2) x-1) is :

If tan x-tan^(2)x=1, then the value of tan^(4)x-2tan^(3)x-tan^(2)x+2tan x+k=4, then k is equal to

If 5(tan^(2)x-cos^(2)x)=2cos2x+9, then the value of cos4x is

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If cos^(2)x+cos^(4)x=1 then tan^(2)x+tan^(4)x=1)12)03)-14)2

If tan x+tan^(2)x+tan^(8)x=1, then the value of 2cos^(6)x-2cos^(4)+cos^(2)x equals to

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If cosA+cos^(2)A=1, then find the value of sin^(12)A+3sin^(10)A+3sin^(...

    Text Solution

    |

  2. If sinA+sin^(2)A=1, then find the value of cos^(12)A+3cos^(10)A+3cos^(...

    Text Solution

    |

  3. If cos^(2)x+cos^(4)x=1, then find the value of tan^(2)x+tan^(4)x.

    Text Solution

    |

  4. If 3sinx+4cosx=2, then find the value of 3cosx-4sinx.

    Text Solution

    |

  5. If costheta-sintheta=sqrt(2)costheta, then find the value of costheta+...

    Text Solution

    |

  6. If sintheta+costheta=sqrt(2), then find the value of sintheta-costheta...

    Text Solution

    |

  7. If sintheta+costheta=pandsectheta+cosectheta=q, then q(p^(2)-1)=?

    Text Solution

    |

  8. If T(n)=sin^(n)theta+cos^(n)theta then (T(3)-T(5))/(T(1))=?

    Text Solution

    |

  9. If x=acos^(3)theta,y=bsin^(3)theta then ((x)/(a))^((2)/(3))+((y)/(b))^...

    Text Solution

    |

  10. If x=asec^(n)thetaandy=btan^(n)theta, then find the value of theta.

    Text Solution

    |

  11. If tan^(5)thetatan^(5)5theta=1, then find the value of tan^(4)3theta.

    Text Solution

    |

  12. If tantheta.tan2theta=1, then find the value of sin^(2)2theta+tan^(2)2...

    Text Solution

    |

  13. If costhetacosec23^(@)=1, the value of theta is

    Text Solution

    |

  14. If sin(x+y)=cos(x-y), then find the value of cos^(2)x.

    Text Solution

    |

  15. If x,y are positive acute angles, x+ylt90^(@) and sin(2x-20^(@))=cos(2...

    Text Solution

    |

  16. If A and B are complementary angles, find the value of sqrt((tanAtanB+...

    Text Solution

    |

  17. A and B are complementary angles, then find the value of sinAcosB+cosA...

    Text Solution

    |

  18. If theta is an acute angle and sintheta=costheta, then find the value ...

    Text Solution

    |

  19. If sin(x+y)=cos[3(x+y)], then the value of tan[2(x+y)] is.

    Text Solution

    |

  20. If sec(5theta-50^(@))=cosec(theta+32^(@)), then the value of theta is:...

    Text Solution

    |