Home
Class 14
MATHS
If costheta-sintheta=sqrt(2)costheta, th...

If `costheta-sintheta=sqrt(2)costheta`, then find the value of `costheta+sintheta`.

A

`sqrt(2)costheta`

B

`sqrt(2)sintheta`

C

`2sintheta`

D

`sqrt(2)tantheta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos \theta - \sin \theta = \sqrt{2} \cos \theta \) and find the value of \( \cos \theta + \sin \theta \), we can follow these steps: ### Step 1: Rearrange the given equation Start with the equation: \[ \cos \theta - \sin \theta = \sqrt{2} \cos \theta \] Rearranging gives: \[ \cos \theta - \sqrt{2} \cos \theta = \sin \theta \] This simplifies to: \[ (1 - \sqrt{2}) \cos \theta = \sin \theta \] ### Step 2: Divide both sides by \( \cos \theta \) Assuming \( \cos \theta \neq 0 \), we can divide both sides by \( \cos \theta \): \[ 1 - \sqrt{2} = \tan \theta \] ### Step 3: Use the identity for \( \cos \theta + \sin \theta \) We know that: \[ \cos \theta + \sin \theta = \sqrt{(\cos \theta)^2 + (\sin \theta)^2 + 2 \cos \theta \sin \theta} \] Using the Pythagorean identity, \( \cos^2 \theta + \sin^2 \theta = 1 \), we can express: \[ \cos \theta + \sin \theta = \sqrt{1 + 2 \cos \theta \sin \theta} \] ### Step 4: Find \( \cos \theta \sin \theta \) From the previous step, we have: \[ \sin \theta = (1 - \sqrt{2}) \cos \theta \] Thus: \[ \cos \theta \sin \theta = \cos \theta \cdot (1 - \sqrt{2}) \cos \theta = (1 - \sqrt{2}) \cos^2 \theta \] ### Step 5: Substitute back into the expression Now substitute \( \cos \theta \sin \theta \) back into the expression for \( \cos \theta + \sin \theta \): \[ \cos \theta + \sin \theta = \sqrt{1 + 2(1 - \sqrt{2}) \cos^2 \theta} \] ### Step 6: Solve for \( \cos \theta + \sin \theta \) To find the exact value, we can use the earlier derived equation. We can square both sides of the equation \( (1 - \sqrt{2}) \cos \theta = \sin \theta \) and use the identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] This leads us to find \( \cos \theta + \sin \theta \) in terms of known quantities. ### Final Result After simplifying, we find that: \[ \cos \theta + \sin \theta = \sqrt{2} \sin \theta \] ### Conclusion Thus, the value of \( \cos \theta + \sin \theta \) is \( \sqrt{2} \sin \theta \), which corresponds to option 2. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If sintheta+costheta=sqrt(2)costheta , then the value of cottheta is

If sintheta=B/A then find the value of costheta

If sintheta+costheta=sqrt(2) , then find the value of sintheta-costheta .

If costheta+sintheta=sqrt(2)costheta , then costheta-sintheta is

If costheta-sintheta=sqrt(2)sintheta , then prove that: costheta+sintheta=sqrt(2)costheta

If (sintheta+costheta)/(sintheta-costheta)=3 , then find the value of sin^(4)theta-cos^(4)theta .

If (costheta-sintheta)/(costheta+sintheta)=(1-sqrt(3))/(1+sqrt(3)) , then find the value of theta .

If Sintheta=costheta , find the value of theta

If A=[(costheta,-sintheta),(sintheta,costheta)] find the values of theta satisfying the equation A^(T)+A =" "I _(2).

If sin theta+costheta=sqrt(2)costheta then what is (costheta-sintheta) equal to ?

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If cos^(2)x+cos^(4)x=1, then find the value of tan^(2)x+tan^(4)x.

    Text Solution

    |

  2. If 3sinx+4cosx=2, then find the value of 3cosx-4sinx.

    Text Solution

    |

  3. If costheta-sintheta=sqrt(2)costheta, then find the value of costheta+...

    Text Solution

    |

  4. If sintheta+costheta=sqrt(2), then find the value of sintheta-costheta...

    Text Solution

    |

  5. If sintheta+costheta=pandsectheta+cosectheta=q, then q(p^(2)-1)=?

    Text Solution

    |

  6. If T(n)=sin^(n)theta+cos^(n)theta then (T(3)-T(5))/(T(1))=?

    Text Solution

    |

  7. If x=acos^(3)theta,y=bsin^(3)theta then ((x)/(a))^((2)/(3))+((y)/(b))^...

    Text Solution

    |

  8. If x=asec^(n)thetaandy=btan^(n)theta, then find the value of theta.

    Text Solution

    |

  9. If tan^(5)thetatan^(5)5theta=1, then find the value of tan^(4)3theta.

    Text Solution

    |

  10. If tantheta.tan2theta=1, then find the value of sin^(2)2theta+tan^(2)2...

    Text Solution

    |

  11. If costhetacosec23^(@)=1, the value of theta is

    Text Solution

    |

  12. If sin(x+y)=cos(x-y), then find the value of cos^(2)x.

    Text Solution

    |

  13. If x,y are positive acute angles, x+ylt90^(@) and sin(2x-20^(@))=cos(2...

    Text Solution

    |

  14. If A and B are complementary angles, find the value of sqrt((tanAtanB+...

    Text Solution

    |

  15. A and B are complementary angles, then find the value of sinAcosB+cosA...

    Text Solution

    |

  16. If theta is an acute angle and sintheta=costheta, then find the value ...

    Text Solution

    |

  17. If sin(x+y)=cos[3(x+y)], then the value of tan[2(x+y)] is.

    Text Solution

    |

  18. If sec(5theta-50^(@))=cosec(theta+32^(@)), then the value of theta is:...

    Text Solution

    |

  19. If x=asinthetaandy=btantheta, then the value of (a^(2))/(x^(2))-(b^(2)...

    Text Solution

    |

  20. If x=asinthetaandy=btantheta, then the value of (a^(2))/(x^(2))-(b^(2)...

    Text Solution

    |