Home
Class 14
MATHS
If T(n)=sin^(n)theta+cos^(n)theta then (...

If `T_(n)=sin^(n)theta+cos^(n)theta` then `(T_(3)-T_(5))/(T_(1))=?`

A

`sintheta.costheta`

B

`sin^(2)theta.cos^(2)theta`

C

`sin^(2)theta.costheta`

D

`sintheta.cos^(2)theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((T_3 - T_5) / T_1\) where \(T_n = \sin^n \theta + \cos^n \theta\). ### Step-by-Step Solution: 1. **Define \(T_n\)**: \[ T_n = \sin^n \theta + \cos^n \theta \] 2. **Calculate \(T_3\)**: \[ T_3 = \sin^3 \theta + \cos^3 \theta \] 3. **Calculate \(T_5\)**: \[ T_5 = \sin^5 \theta + \cos^5 \theta \] 4. **Calculate \(T_1\)**: \[ T_1 = \sin \theta + \cos \theta \] 5. **Substitute into the expression**: \[ \frac{T_3 - T_5}{T_1} = \frac{(\sin^3 \theta + \cos^3 \theta) - (\sin^5 \theta + \cos^5 \theta)}{\sin \theta + \cos \theta} \] 6. **Factor the numerator**: - For \(T_3 - T_5\), we can factor out \(\sin^3 \theta\) and \(\cos^3 \theta\): \[ T_3 - T_5 = \sin^3 \theta (1 - \sin^2 \theta) + \cos^3 \theta (1 - \cos^2 \theta) \] - This simplifies to: \[ T_3 - T_5 = \sin^3 \theta \cos^2 \theta + \cos^3 \theta \sin^2 \theta \] 7. **Rewrite the numerator**: \[ T_3 - T_5 = \sin^2 \theta \cos^2 \theta (\sin \theta + \cos \theta) \] 8. **Substitute back into the expression**: \[ \frac{T_3 - T_5}{T_1} = \frac{\sin^2 \theta \cos^2 \theta (\sin \theta + \cos \theta)}{\sin \theta + \cos \theta} \] 9. **Cancel out \((\sin \theta + \cos \theta)\)**: \[ \frac{T_3 - T_5}{T_1} = \sin^2 \theta \cos^2 \theta \] ### Final Result: \[ \frac{T_3 - T_5}{T_1} = \sin^2 \theta \cos^2 \theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If T_(n)=sin^(n)theta+cos^(n)theta , then (T_(6)-T_(4))/(T_(6))=m holds for values of m satisfying

If T_(n)=sin^(n)theta+cos^(n)theta , then (T_(6)-T_(4))/(T_(6))=m holds for values of m satisfying

Prove the trigonometric identities: If T_(n)=sin^(n)theta+cos^(n)theta, prove that (T_(3)-T_(5))/(T_(1))=(T_(5)-T_(7))/(T_(3))

If T_(n)=sin^(n)theta+cos^(n)theta ,prove that (i)(T_(3)-T_(5))/(T_(1))=(T_(5)-T_(7))/(T_(3)) (ii) 2T_(6)-3T_(4)+1=0 (iii) 6T_(10)-15T_(8)+10T_(6)-1=0

If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=

If T_(n)=sin^(n)x+cos^(pi)x prove that (T_(3)-T_(5))/(T_(1))=(T_(5)-T_(7))/(T_(3))

If T_n = sin^(n)theta + cos^(n)theta then prove that (T_5 -T_3): (T_7- T_5) = T_1 :T_3 .

If T_n =sin^n theta+cos^n theta, then (T_6-T_4)/T_6 =m holds for values of m satisfying (A) m in [-1, 1/3] (B) m in [0, 1/3] (C) m in [-1,0] (D) m in [-1, - 1/2]

If T_(n)=sin^(n)x+cos^(n)x, prove that 2T_(6)-3T_(4)+1=0

Suppose we consider friction between string and the pulley while still considering the string to be massless. So, in such a theoretical case, the tension in the string in contant with the pulley will not be constant and its variation is calculated as follows. If the string is just on the verge of slipping on the pulley, then friction acting is limiting and if T_(2) gt T_(1) then friction will act towards T_(1) in tangential direction as shown. d N = (T + df) sin (d theta//2) + (T + dT) sin (d theta//2) dN = T sin (d theta//2) + df sin (d del//2) + T sin (d theta//2) + d T sin (d theta//2) dN ~~ 2T sin (d theta//2) d N ~~ 2T (d theta)/(2) d N = T d theta ........(1) Alsso, (T + df) cos ((d theta)/(2)) = (T + d T) cos ((d theta)/(2)) T cos ((d theta)/(2)) + df cos ((d theta)/(2)) = T cos ((d theta)/(2)) 1 dT cos ((d theta)/(2)) df = dT = mu d N .........(2) from (1) & (2) dT = mu T d theta int_(T_(1))^(T_(2)) (dT)/(T) = mu int_(0)^(theta) d theta ln ((T_(2))/(T_(1))) = mu theta T_(2) = T_(1) e^(mu theta) , where theta is the angle of contact between the string and the pulley Based on above information, answer the following questions. Two masses m_(1) kg and m_(2) kg passes over an atwood machine. Find the ratio of masses m_(1) and m_(2) so that string passing over the pulley will just start slipping over its surface. The friction coefficient between the string and pulley surface is 0.2.

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If sintheta+costheta=sqrt(2), then find the value of sintheta-costheta...

    Text Solution

    |

  2. If sintheta+costheta=pandsectheta+cosectheta=q, then q(p^(2)-1)=?

    Text Solution

    |

  3. If T(n)=sin^(n)theta+cos^(n)theta then (T(3)-T(5))/(T(1))=?

    Text Solution

    |

  4. If x=acos^(3)theta,y=bsin^(3)theta then ((x)/(a))^((2)/(3))+((y)/(b))^...

    Text Solution

    |

  5. If x=asec^(n)thetaandy=btan^(n)theta, then find the value of theta.

    Text Solution

    |

  6. If tan^(5)thetatan^(5)5theta=1, then find the value of tan^(4)3theta.

    Text Solution

    |

  7. If tantheta.tan2theta=1, then find the value of sin^(2)2theta+tan^(2)2...

    Text Solution

    |

  8. If costhetacosec23^(@)=1, the value of theta is

    Text Solution

    |

  9. If sin(x+y)=cos(x-y), then find the value of cos^(2)x.

    Text Solution

    |

  10. If x,y are positive acute angles, x+ylt90^(@) and sin(2x-20^(@))=cos(2...

    Text Solution

    |

  11. If A and B are complementary angles, find the value of sqrt((tanAtanB+...

    Text Solution

    |

  12. A and B are complementary angles, then find the value of sinAcosB+cosA...

    Text Solution

    |

  13. If theta is an acute angle and sintheta=costheta, then find the value ...

    Text Solution

    |

  14. If sin(x+y)=cos[3(x+y)], then the value of tan[2(x+y)] is.

    Text Solution

    |

  15. If sec(5theta-50^(@))=cosec(theta+32^(@)), then the value of theta is:...

    Text Solution

    |

  16. If x=asinthetaandy=btantheta, then the value of (a^(2))/(x^(2))-(b^(2)...

    Text Solution

    |

  17. If x=asinthetaandy=btantheta, then the value of (a^(2))/(x^(2))-(b^(2)...

    Text Solution

    |

  18. If x=asecthetacostheta,y=bsecthetasinthetaandz=thetatantheta, then fin...

    Text Solution

    |

  19. Find the value of 3sin20^(@)-4sin^(3)20^(@).

    Text Solution

    |

  20. Find the value of 3cos20^(@)-4cos^(3)20^(@).

    Text Solution

    |