Home
Class 14
MATHS
A and B are complementary angles, then f...

A and B are complementary angles, then find the value of `sinAcosB+cosAsinB+2tanAtanB-sec^(2)A+cot^(2)B`.

A

5

B

`sqrt(2)`

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin A \cos B + \cos A \sin B + 2 \tan A \tan B - \sec^2 A + \cot^2 B \) given that \( A \) and \( B \) are complementary angles, we can follow these steps: ### Step 1: Understand the relationship between complementary angles Since \( A \) and \( B \) are complementary angles, we have: \[ A + B = 90^\circ \quad \text{or} \quad B = 90^\circ - A \] ### Step 2: Substitute \( B \) in the expression Using the relationship \( B = 90^\circ - A \), we can rewrite the expression: \[ \sin A \cos(90^\circ - A) + \cos A \sin(90^\circ - A) + 2 \tan A \tan(90^\circ - A) - \sec^2 A + \cot^2(90^\circ - A) \] ### Step 3: Simplify using trigonometric identities Using the trigonometric identities: - \( \cos(90^\circ - A) = \sin A \) - \( \sin(90^\circ - A) = \cos A \) - \( \tan(90^\circ - A) = \cot A \) - \( \cot(90^\circ - A) = \tan A \) Substituting these identities into the expression gives: \[ \sin A \sin A + \cos A \cos A + 2 \tan A \cot A - \sec^2 A + \tan^2 A \] ### Step 4: Further simplify the expression This can be simplified to: \[ \sin^2 A + \cos^2 A + 2 \cdot 1 - \sec^2 A + \tan^2 A \] Using the Pythagorean identity \( \sin^2 A + \cos^2 A = 1 \): \[ 1 + 2 - \sec^2 A + \tan^2 A \] ### Step 5: Use the identity \( \sec^2 A = 1 + \tan^2 A \) Substituting \( \sec^2 A \) gives: \[ 1 + 2 - (1 + \tan^2 A) + \tan^2 A \] This simplifies to: \[ 1 + 2 - 1 - \tan^2 A + \tan^2 A = 2 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If A and B are complementary angles, then the value of sin A cos B + cos A sin B - tanA tan B + sec^(2) A - cot^2 B is

If A and B are supplementary angles then find the value of (tanA+tanB)/(1-tanAtanB)

If A and B are complementary angles, then the value of (sin^(2)A + sin^(2)B)/("cosec"^(2)A-tan^(2)B) is ________

If A and B are complementary angles, find the value of sqrt((tanAtanB+cotAcotB)/(sinAsecB)-(sin^(2)B)/(cos^(2)A))

If A and B are complementary angles,then sin A=sin B(b)cos A=cos B(c)tan A=tan B(d)sec A=cos ecB

If angle A and angle B are complementary to each other,then the value of sec^2 A + sec^2 B - sec^2 A sec^2 B is

In a DeltaABC , right angled at B, find the value of 2 sin A cot A if tan A= sqrt3

If sinA=(sqrt(3))/(2)andsinB=(1)/(2) , then find the value if sin AcosB +cosAsinB.

If A and B are acute angles and SecA = 3,CotB = 4, then the value of ("cosec"^(2)A + sin^(2)B)/(cot^(2)A + sec^(2)B) is:

If A+B+C=pi/2 , then find the value of tanAtanB+tanBtanC+tanCtanA

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If x,y are positive acute angles, x+ylt90^(@) and sin(2x-20^(@))=cos(2...

    Text Solution

    |

  2. If A and B are complementary angles, find the value of sqrt((tanAtanB+...

    Text Solution

    |

  3. A and B are complementary angles, then find the value of sinAcosB+cosA...

    Text Solution

    |

  4. If theta is an acute angle and sintheta=costheta, then find the value ...

    Text Solution

    |

  5. If sin(x+y)=cos[3(x+y)], then the value of tan[2(x+y)] is.

    Text Solution

    |

  6. If sec(5theta-50^(@))=cosec(theta+32^(@)), then the value of theta is:...

    Text Solution

    |

  7. If x=asinthetaandy=btantheta, then the value of (a^(2))/(x^(2))-(b^(2)...

    Text Solution

    |

  8. If x=asinthetaandy=btantheta, then the value of (a^(2))/(x^(2))-(b^(2)...

    Text Solution

    |

  9. If x=asecthetacostheta,y=bsecthetasinthetaandz=thetatantheta, then fin...

    Text Solution

    |

  10. Find the value of 3sin20^(@)-4sin^(3)20^(@).

    Text Solution

    |

  11. Find the value of 3cos20^(@)-4cos^(3)20^(@).

    Text Solution

    |

  12. If cos^(2)alpha+cos^(2)beta=2, the value of tan^(3)alpha+sin^(5)beta i...

    Text Solution

    |

  13. Find the value of tan^(n)1^(@)tan^(n)2^(@)tan^(n)3^(@)......tan^(n)8...

    Text Solution

    |

  14. Find the value of tan^(n)1^(@)tan^(n)2^(@)tan^(n)3^(@)......tan^(n)8...

    Text Solution

    |

  15. The product cos1^(@)cos2^(@)cos3^(@)cos4^(@)......cos100^(@). Is equal...

    Text Solution

    |

  16. Find the value of cos1^(@).cos2^(@).cos3^(@).cos90^(@)

    Text Solution

    |

  17. Find the value of sin1^(@).sin2^(@).sin3^(@)…sin180^(@).

    Text Solution

    |

  18. Find the value of sin^(2)1^(@)+sin^(2)2^(@)+sin^(2)3^(@)+ ----+sin^(...

    Text Solution

    |

  19. Find the value of cos^(2)1^(@)+cos^(2)2^(@)+cos^(2)3^(@)+ -----+cos^...

    Text Solution

    |

  20. sin^(2)5^(@)+sin^(2)10^(@)+sin^(2)15^(@)+ .....+sin^(2)85^(@)+sin^(2)9...

    Text Solution

    |