Home
Class 14
MATHS
(5sin^(2)30^(@)+cos^(2)45^(@)-4tan^(2)30...

`(5sin^(2)30^(@)+cos^(2)45^(@)-4tan^(2)30^(@))/(2sin30^(@).cos30^(@)+tan45^(@))=?`

A

`(5)/(6)(2-sqrt(3))`

B

`(5)/(6)(2+sqrt(3))`

C

`2-sqrt(3)`

D

`(1)/(6)(2-sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{5\sin^2 30^\circ + \cos^2 45^\circ - 4\tan^2 30^\circ}{2\sin 30^\circ \cdot \cos 30^\circ + \tan 45^\circ} \] we will first substitute the known values of the trigonometric functions. ### Step 1: Substitute the values of trigonometric functions - \(\sin 30^\circ = \frac{1}{2}\) - \(\cos 30^\circ = \frac{\sqrt{3}}{2}\) - \(\cos 45^\circ = \frac{1}{\sqrt{2}}\) - \(\tan 30^\circ = \frac{1}{\sqrt{3}}\) - \(\tan 45^\circ = 1\) Substituting these values into the expression gives: \[ \frac{5\left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 - 4\left(\frac{1}{\sqrt{3}}\right)^2}{2\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + 1} \] ### Step 2: Simplify the numerator Calculating each term in the numerator: 1. \(5\left(\frac{1}{2}\right)^2 = 5 \cdot \frac{1}{4} = \frac{5}{4}\) 2. \(\left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}\) 3. \(4\left(\frac{1}{\sqrt{3}}\right)^2 = 4 \cdot \frac{1}{3} = \frac{4}{3}\) Now, substituting these values back into the numerator: \[ \frac{5}{4} + \frac{1}{2} - \frac{4}{3} \] ### Step 3: Find a common denominator for the numerator The common denominator for \(4\), \(2\), and \(3\) is \(12\). Now we convert each term: 1. \(\frac{5}{4} = \frac{15}{12}\) 2. \(\frac{1}{2} = \frac{6}{12}\) 3. \(\frac{4}{3} = \frac{16}{12}\) Now substituting these values gives: \[ \frac{15}{12} + \frac{6}{12} - \frac{16}{12} = \frac{15 + 6 - 16}{12} = \frac{5}{12} \] ### Step 4: Simplify the denominator Now simplifying the denominator: \[ 2\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + 1 = \frac{\sqrt{3}}{2} + 1 \] ### Step 5: Combine the results Now we have: \[ \frac{\frac{5}{12}}{\frac{\sqrt{3}}{2} + 1} \] ### Step 6: Rationalize the denominator To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{5}{12} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}} = \frac{5(2 - \sqrt{3})}{12\left((\sqrt{3}/2) + 1\right)(2 - \sqrt{3})} \] Calculating the denominator: \[ \left(\frac{\sqrt{3}}{2} + 1\right)(2 - \sqrt{3}) = \frac{\sqrt{3}}{2} \cdot 2 - \frac{3}{2} + 2 - \sqrt{3} = 1 \] Thus, the final result is: \[ \frac{5(2 - \sqrt{3})}{12} \] ### Final Answer \[ \frac{5(2 - \sqrt{3})}{12} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

Find the value of : (5sin^(3)30^(@)+cos^(2)45^(@)-4tan^(2)30^(@))/(2sin 30^(@).cos30^(@)+tan45^(@))+cos 0^(@)

1Evaluate : (5sin^(2)30^(@)+cos^(2)45^(0)-tan^(2)30^(@))/(2sin30^(0)xxcos30^(@)+tan45^(@))

Evaluate : (sin^(2)30^(@)+sin^(2)45^(@)-4cot^(2)60^(@))/(2sin30^(@)cos30^(@)+(1)/(2)tan60^(@))

4sin^(2)60^(@)+3tan^(2)30^(@)-8sin45^(@)*cos45^(@)

Evaluate : (i) sin^(2)30^(@)*cos^(2)45^(@)+4tan^(2)30^(@)+(1)/(2)sin^(2)90+(1)/(8)cot^(2)60^(@) (ii) (tan^(2)60^(@)+4sin^(2)45^(@)+3sec^(2)30^(@)+5cos^(2)90^(@))/(cosec30^(@)+sec60^(@)-cot^(2)30^(@))

The value of (cos^(2)60^(@)+4sec^(2)30^(@)-tan^(2)45^(@))/(sin^(2)30^(@)+cos^(2)30^(@)) is

The value of (1)/(2) sin ^(2) 90^(@) sin^(2) 30^(@) cos ^(2) 45^(@) + 4 tan ^(2) 30^(@) + (1)/(2) sin^(2) 90^(@) - 2 cos ^(2) 90^(@) is :

Evaluate each of the following: (sin60o)/(cos^(2)45o)-cot30o+15cos90o( (ii) (5sin^(2)30o+cos^(2)45o-4tan^(2)30o)/(2sin300cos30o+tan45o)

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If cosecA=2, then (1)/(tanA)+(sinA)/(1+cosA)=?

    Text Solution

    |

  2. If tanA=sqrt(2)-1, then sin2A = ?

    Text Solution

    |

  3. (5sin^(2)30^(@)+cos^(2)45^(@)-4tan^(2)30^(@))/(2sin30^(@).cos30^(@)+ta...

    Text Solution

    |

  4. (cos(90^(@)-theta).sec(90^(@)-theta).tantheta)/(cosec(90^(@)-theta).si...

    Text Solution

    |

  5. If alpha is in first quadrant such that tan^(2)alpha=(8)/(7), then the...

    Text Solution

    |

  6. (kcosec^(2)30^(@).sec^(2)45)/(8cos^(2)45^(@).sin^(2)60^(@))=tan^(2)60^...

    Text Solution

    |

  7. If alpha is in Ist quadrant such that sec^(2)alpha=3, then (tan^(2)alp...

    Text Solution

    |

  8. If 5alpha and 4alpha are in Ist quadrant such that sin5alpha=cos4alpha...

    Text Solution

    |

  9. If (sintheta+cosectheta)^(2)+(costheta+sectheta)^(2)=K+tan^(2)theta+co...

    Text Solution

    |

  10. (sinalpha+secalpha)^(2)+(cosalpha+cosecalpha)^(2)=(K+secalphacosecalph...

    Text Solution

    |

  11. (sintheta)/(cottheta+cosectheta)-(sintheta)/(cottheta-cosectheta)=?

    Text Solution

    |

  12. If (tanA)/(1-cotA)+(cotA)/(1-tanA)=K+tanA+cotA then K = ?

    Text Solution

    |

  13. If (cos^(2)theta)/(1-tantheta)+(sin^(3)theta)/(sintheta-costheta)=K+si...

    Text Solution

    |

  14. ((1-sintheta+costheta)^(2))/((1+costheta)(1-sintheta))=?

    Text Solution

    |

  15. sec^(6)theta-tan^(6)theta-3tan^(2)theta.sec^(2)theta=?

    Text Solution

    |

  16. cosec^(6)theta-cot^(6)theta-3cot^(2)theta.cosec^(2)theta=?

    Text Solution

    |

  17. ((cosectheta-sectheta)(cottheta-tantheta))/((cosectheta+sectheta)(sect...

    Text Solution

    |

  18. sec^(4)alpha(1-sin^(4)alpha)-2tan^(2)alpha=?

    Text Solution

    |

  19. If sintheta+costheta=sqrt(2)sin(90^(@)-theta), then cottheta=?

    Text Solution

    |

  20. If cotalpha=(15)/(8), then ((2+2sinalpha)(1-sinalpha))/((1+cosalpha)(2...

    Text Solution

    |