Home
Class 14
MATHS
(cos(90^(@)-theta).sec(90^(@)-theta).tan...

`(cos(90^(@)-theta).sec(90^(@)-theta).tantheta)/(cosec(90^(@)-theta).sin(90^(@)-theta).cot(90^(@)-theta))=?`

A

1

B

2

C

3

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\cos(90^\circ - \theta) \cdot \sec(90^\circ - \theta) \cdot \tan \theta) / (\csc(90^\circ - \theta) \cdot \sin(90^\circ - \theta) \cdot \cot(90^\circ - \theta))\), we will use trigonometric identities. ### Step-by-step Solution: 1. **Use the co-function identities**: - \(\cos(90^\circ - \theta) = \sin \theta\) - \(\sec(90^\circ - \theta) = \csc \theta\) - \(\csc(90^\circ - \theta) = \sec \theta\) - \(\sin(90^\circ - \theta) = \cos \theta\) - \(\cot(90^\circ - \theta) = \tan \theta\) Substituting these identities into the expression gives: \[ \frac{\sin \theta \cdot \csc \theta \cdot \tan \theta}{\sec \theta \cdot \cos \theta \cdot \tan \theta} \] 2. **Simplify the expression**: - Recall that \(\csc \theta = \frac{1}{\sin \theta}\) and \(\sec \theta = \frac{1}{\cos \theta}\). - Therefore, we can rewrite the expression: \[ \frac{\sin \theta \cdot \frac{1}{\sin \theta} \cdot \tan \theta}{\frac{1}{\cos \theta} \cdot \cos \theta \cdot \tan \theta} \] 3. **Cancel out terms**: - The \(\sin \theta\) in the numerator and denominator cancels out: \[ \frac{1 \cdot \tan \theta}{\frac{1}{\cos \theta} \cdot \cos \theta \cdot \tan \theta} \] - The \(\tan \theta\) in the numerator and denominator also cancels out: \[ \frac{1}{1} = 1 \] 4. **Final Result**: The final result of the expression is: \[ 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

Prove the following: (cos(90^(@)-theta)sec(90^(@)-theta)tan theta)/(cos ec(90^(@)-theta)sin(90^(@)-theta)cot(90^(@)-theta))+(tan(90^(@)-theta))/(cot theta)=2

The value of (cos(90^(0)-theta)sec(90^(@)-theta)tan theta)/(csc(90^(@)-theta)sin(90^(@)-theta)cot(90^(@)-theta))+(tan(90^(@)-theta))/(cot theta) is 1(b)-1(c)2(d)-2

Knowledge Check

  • What is the value of : (sin(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)"cosec "(90^(@)+theta)) :

    A
    `sin theta`
    B
    `cos theta`
    C
    1
    D
    `(1)/(sqrt2)`
  • The value of (cos(90^(@)theta)sec(270^(@)+theta)sin(180^(@)+theta))/(cosec(-theta)cos(270^(@)-theta)tan(180^(@)+theta)) is

    A
    `cos theta`
    B
    `sin theta`
    C
    `tan theta`
    D
    `cot theta`
  • Similar Questions

    Explore conceptually related problems

    Prove that (cos(90^(@)+theta)sec(-theta)tan(180^(@)-theta))/(sec(360^(@)-theta)sin(180^(@)+theta)cot(90^(@)-theta))=-1

    Prove that (cos(90^(0)+theta)sec(-theta)tan(180^(@)-theta))/(sec(360^(@)-theta)sin(180^(@)+theta)cot(90^(@)-theta))=-1

    Prove that: (tan(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)csc(90^(@)-theta))=1

    Prove that : (i) sinthetacos(90^(@)-theta)+sin(90^(@)-theta)costheta=1 (ii) sectheta" cosec"(90^(@)-theta)-tanthetacot(90^(@)-theta)=1 (iii) (sintheta*sec(90^(@)-theta)cot(90^(@)-theta))/("cosec"(90^(@)-theta)*costheta*tantheta)-(tan(90^(@)-theta))/(cottheta)=0 (iv) (1+sin(90^(@)-theta))/(cos(90^(@)-0))+(cos(90^(@)-theta))/(1+sin(90^(@)-0))=2"cosec"theta

    (cot(90^(@)-theta)sin(180^(@)-theta)sec(360^(@)-theta))/(tan(180^(@)+theta)sec(-theta)cos(90^(@)+theta))

    sin theta cos(90^(@)-theta)+cos theta sin(90^(@)-theta)