Home
Class 14
MATHS
(sinalpha+secalpha)^(2)+(cosalpha+coseca...

`(sinalpha+secalpha)^(2)+(cosalpha+cosecalpha)^(2)=(K+secalphacosecalpha)^(2)`, then K = ?

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sin \alpha + \sec \alpha)^2 + (\cos \alpha + \csc \alpha)^2 = (K + \sec \alpha \csc \alpha)^2\), we will use the substitution method by evaluating the expression for a specific angle. Let's take \(\alpha = 45^\circ\). ### Step 1: Substitute \(\alpha = 45^\circ\) We know that: - \(\sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}\) - \(\sec 45^\circ = \csc 45^\circ = \sqrt{2}\) Substituting these values into the left-hand side of the equation: \[ \left(\sin 45^\circ + \sec 45^\circ\right)^2 + \left(\cos 45^\circ + \csc 45^\circ\right)^2 \] This simplifies to: \[ \left(\frac{1}{\sqrt{2}} + \sqrt{2}\right)^2 + \left(\frac{1}{\sqrt{2}} + \sqrt{2}\right)^2 \] ### Step 2: Simplify the expression Calculating \(\frac{1}{\sqrt{2}} + \sqrt{2}\): \[ \frac{1}{\sqrt{2}} + \sqrt{2} = \frac{1 + 2}{\sqrt{2}} = \frac{3}{\sqrt{2}} \] Now we can substitute this back into the equation: \[ \left(\frac{3}{\sqrt{2}}\right)^2 + \left(\frac{3}{\sqrt{2}}\right)^2 \] ### Step 3: Calculate the squares Calculating the squares: \[ \left(\frac{3}{\sqrt{2}}\right)^2 = \frac{9}{2} \] Thus, we have: \[ \frac{9}{2} + \frac{9}{2} = 9 \] ### Step 4: Evaluate the right-hand side Now, we evaluate the right-hand side of the equation: \[ (K + \sec 45^\circ \csc 45^\circ)^2 \] Calculating \(\sec 45^\circ \csc 45^\circ\): \[ \sec 45^\circ \csc 45^\circ = \sqrt{2} \cdot \sqrt{2} = 2 \] So the right-hand side becomes: \[ (K + 2)^2 \] ### Step 5: Set the two sides equal Now we set the left-hand side equal to the right-hand side: \[ 9 = (K + 2)^2 \] ### Step 6: Solve for \(K\) Taking the square root of both sides gives us two equations: \[ K + 2 = 3 \quad \text{or} \quad K + 2 = -3 \] From \(K + 2 = 3\): \[ K = 3 - 2 = 1 \] From \(K + 2 = -3\): \[ K = -3 - 2 = -5 \quad \text{(not valid since K is positive)} \] Thus, the only valid solution is: \[ K = 1 \] ### Final Answer Therefore, the value of \(K\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

(sinalpha + cosalpha)(tanalpha + cotalpha) = secalpha + cosecalpha

If (sinalpha+"cosec"alpha)^(2)+(cosalpha+secalpha)^(2)=k+tan^(2)alpha+cot^(2)alpha then the value of k is

Prove that (sinalpha+cosalpha)(tanalpha+cotalpha)=secalpha+"cosec"alpha

If tantheta = (sinalpha-cosalpha)/(sinalpha+cosalpha), then (A) sin alpha-cos alpha=+-sqrt(2) sin theta (B) sinalpha+cosalpha=+-sqrt(2) cos theta (C) cos2theta=sin2alpha (D) sin2theta+cos2alpha=0

Prove that : (sinalpha+cosalpha)(tanalpha+cotalpha)=secalpha+"cosecα" .

If A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?

If alpha is any real number, then : (sinalpha+cosecalpha)^2+(cosalpha+secalpha)^2-(tan^2alpha+cot^2alpha)=....

If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha) then show that sinalpha+cosalpha=sqrt(2)costheta .

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A^(2)=[{:(cos2alpha,sin2alpha),(-sin2alpha,cos2alpha) :}].

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If 5alpha and 4alpha are in Ist quadrant such that sin5alpha=cos4alpha...

    Text Solution

    |

  2. If (sintheta+cosectheta)^(2)+(costheta+sectheta)^(2)=K+tan^(2)theta+co...

    Text Solution

    |

  3. (sinalpha+secalpha)^(2)+(cosalpha+cosecalpha)^(2)=(K+secalphacosecalph...

    Text Solution

    |

  4. (sintheta)/(cottheta+cosectheta)-(sintheta)/(cottheta-cosectheta)=?

    Text Solution

    |

  5. If (tanA)/(1-cotA)+(cotA)/(1-tanA)=K+tanA+cotA then K = ?

    Text Solution

    |

  6. If (cos^(2)theta)/(1-tantheta)+(sin^(3)theta)/(sintheta-costheta)=K+si...

    Text Solution

    |

  7. ((1-sintheta+costheta)^(2))/((1+costheta)(1-sintheta))=?

    Text Solution

    |

  8. sec^(6)theta-tan^(6)theta-3tan^(2)theta.sec^(2)theta=?

    Text Solution

    |

  9. cosec^(6)theta-cot^(6)theta-3cot^(2)theta.cosec^(2)theta=?

    Text Solution

    |

  10. ((cosectheta-sectheta)(cottheta-tantheta))/((cosectheta+sectheta)(sect...

    Text Solution

    |

  11. sec^(4)alpha(1-sin^(4)alpha)-2tan^(2)alpha=?

    Text Solution

    |

  12. If sintheta+costheta=sqrt(2)sin(90^(@)-theta), then cottheta=?

    Text Solution

    |

  13. If cotalpha=(15)/(8), then ((2+2sinalpha)(1-sinalpha))/((1+cosalpha)(2...

    Text Solution

    |

  14. If x=asinalphaandy=bcosalpha, then b^(2)x^(2)+a^(2)y^(2)=?

    Text Solution

    |

  15. ((cottheta)/(cottheta-cot3theta)+(tantheta)/(tantheta-tan3theta))=?

    Text Solution

    |

  16. If tantheta-cottheta=(119)/(60)" for "0^(@)ltthetaltpi//2, then the va...

    Text Solution

    |

  17. If x=2tanalpha,y=2cotalpha, then 16((1)/(4+x^(2))+(1)/(4+y^(2)))=?

    Text Solution

    |

  18. cos^(2)""(pi)/(16)+cos^(2)""(3pi)/(16)+cos^(2)""(5pi)/(16)+cos^(2)""(7...

    Text Solution

    |

  19. cos^(2)(A-B)+cos^(2)B-2cos(A-B).cosA.cosB=?

    Text Solution

    |

  20. (cot^(2)""(theta)/(2)-tan^(2)""(theta)/(2))/(cottheta.cosectheta)=?

    Text Solution

    |