Home
Class 14
MATHS
((cosectheta-sectheta)(cottheta-tantheta...

`((cosectheta-sectheta)(cottheta-tantheta))/((cosectheta+sectheta)(sectheta.cosectheta-2))=?`

A

a) 2

B

b) 1

C

c) 3

D

d) `-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(\csc \theta - \sec \theta)(\cot \theta - \tan \theta)}{(\csc \theta + \sec \theta)(\sec \theta \csc \theta - 2)}\), we will follow these steps: ### Step 1: Rewrite the Trigonometric Functions We start by rewriting the trigonometric functions in terms of sine and cosine: - \(\csc \theta = \frac{1}{\sin \theta}\) - \(\sec \theta = \frac{1}{\cos \theta}\) - \(\cot \theta = \frac{\cos \theta}{\sin \theta}\) - \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) Substituting these into the expression gives: \[ \frac{\left(\frac{1}{\sin \theta} - \frac{1}{\cos \theta}\right)\left(\frac{\cos \theta}{\sin \theta} - \frac{\sin \theta}{\cos \theta}\right)}{\left(\frac{1}{\sin \theta} + \frac{1}{\cos \theta}\right)\left(\frac{1}{\cos \theta} \cdot \frac{1}{\sin \theta} - 2\right)} \] ### Step 2: Simplify the Numerator Now, simplify the numerator: \[ \frac{1}{\sin \theta} - \frac{1}{\cos \theta} = \frac{\cos \theta - \sin \theta}{\sin \theta \cos \theta} \] \[ \frac{\cos \theta}{\sin \theta} - \frac{\sin \theta}{\cos \theta} = \frac{\cos^2 \theta - \sin^2 \theta}{\sin \theta \cos \theta} \] Thus, the numerator becomes: \[ \frac{(\cos \theta - \sin \theta)(\cos^2 \theta - \sin^2 \theta)}{\sin^2 \theta \cos^2 \theta} \] ### Step 3: Simplify the Denominator Now simplify the denominator: \[ \frac{1}{\sin \theta} + \frac{1}{\cos \theta} = \frac{\sin \theta + \cos \theta}{\sin \theta \cos \theta} \] \[ \frac{1}{\cos \theta} \cdot \frac{1}{\sin \theta} - 2 = \frac{1}{\sin \theta \cos \theta} - 2 \] This can be rewritten as: \[ \frac{1 - 2\sin \theta \cos \theta}{\sin \theta \cos \theta} \] Thus, the denominator becomes: \[ \frac{(\sin \theta + \cos \theta)(1 - 2\sin \theta \cos \theta)}{\sin^2 \theta \cos^2 \theta} \] ### Step 4: Combine the Numerator and Denominator Now we can combine the numerator and denominator: \[ \frac{(\cos \theta - \sin \theta)(\cos^2 \theta - \sin^2 \theta)}{(\sin \theta + \cos \theta)(1 - 2\sin \theta \cos \theta)} \] ### Step 5: Factor and Simplify Notice that \(\cos^2 \theta - \sin^2 \theta\) can be factored as \((\cos \theta - \sin \theta)(\cos \theta + \sin \theta)\): \[ \frac{(\cos \theta - \sin \theta)^2(\cos \theta + \sin \theta)}{(\sin \theta + \cos \theta)(1 - 2\sin \theta \cos \theta)} \] The \((\sin \theta + \cos \theta)\) terms cancel out: \[ \frac{(\cos \theta - \sin \theta)^2}{1 - 2\sin \theta \cos \theta} \] ### Step 6: Use Pythagorean Identity Using the identity \(\cos^2 \theta + \sin^2 \theta = 1\), we can simplify further: \[ (\cos \theta - \sin \theta)^2 = \cos^2 \theta + \sin^2 \theta - 2\sin \theta \cos \theta = 1 - 2\sin \theta \cos \theta \] Thus, we have: \[ \frac{1 - 2\sin \theta \cos \theta}{1 - 2\sin \theta \cos \theta} = 1 \] ### Final Answer Therefore, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

tantheta-tantheta/2=sectheta/2

(cosectheta-cottheta)^2=

(cottheta-cosectheta+1)/(cottheta+cosectheta-1) = ?

(cosectheta+cottheta)^2=

(sectheta+tantheta-1)(sectheta-tantheta+1)=

sectheta/tantheta=?

(1+cottheta-cosectheta)(1+tantheta+sectheta)=?

(sintheta)/(cottheta+cosectheta)-(sintheta)/(cottheta-cosectheta)=?

(csctheta-sintheta")(sectheta-costheta)(tantheta+cottheta)=

(tantheta-sectheta)^2

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. sec^(6)theta-tan^(6)theta-3tan^(2)theta.sec^(2)theta=?

    Text Solution

    |

  2. cosec^(6)theta-cot^(6)theta-3cot^(2)theta.cosec^(2)theta=?

    Text Solution

    |

  3. ((cosectheta-sectheta)(cottheta-tantheta))/((cosectheta+sectheta)(sect...

    Text Solution

    |

  4. sec^(4)alpha(1-sin^(4)alpha)-2tan^(2)alpha=?

    Text Solution

    |

  5. If sintheta+costheta=sqrt(2)sin(90^(@)-theta), then cottheta=?

    Text Solution

    |

  6. If cotalpha=(15)/(8), then ((2+2sinalpha)(1-sinalpha))/((1+cosalpha)(2...

    Text Solution

    |

  7. If x=asinalphaandy=bcosalpha, then b^(2)x^(2)+a^(2)y^(2)=?

    Text Solution

    |

  8. ((cottheta)/(cottheta-cot3theta)+(tantheta)/(tantheta-tan3theta))=?

    Text Solution

    |

  9. If tantheta-cottheta=(119)/(60)" for "0^(@)ltthetaltpi//2, then the va...

    Text Solution

    |

  10. If x=2tanalpha,y=2cotalpha, then 16((1)/(4+x^(2))+(1)/(4+y^(2)))=?

    Text Solution

    |

  11. cos^(2)""(pi)/(16)+cos^(2)""(3pi)/(16)+cos^(2)""(5pi)/(16)+cos^(2)""(7...

    Text Solution

    |

  12. cos^(2)(A-B)+cos^(2)B-2cos(A-B).cosA.cosB=?

    Text Solution

    |

  13. (cot^(2)""(theta)/(2)-tan^(2)""(theta)/(2))/(cottheta.cosectheta)=?

    Text Solution

    |

  14. Prove that cos^(2)theta + cos^(2)(alpha + theta) – 2cos alpha *cos th...

    Text Solution

    |

  15. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  16. If tanx+secx=2cot(90^(@)+x), then cosecx=?

    Text Solution

    |

  17. If (1)/(cosectheta+cottheta)-cosectheta-tantheta=3ksecthetacosectheta,...

    Text Solution

    |

  18. If tantheta=(11)/(13), then find (5sintheta-3costheta)/(5sintheta+2cos...

    Text Solution

    |

  19. If 7sin^(2)theta+3cos^(2)theta=4, then value of tantheta.

    Text Solution

    |

  20. (1+cottheta-cosectheta)(1+tantheta+sectheta)=?

    Text Solution

    |