Home
Class 14
MATHS
sec^(4)alpha(1-sin^(4)alpha)-2tan^(2)alp...

`sec^(4)alpha(1-sin^(4)alpha)-2tan^(2)alpha=?`

A

a) 1

B

b) 2

C

c) 3

D

d) 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sec^4 \alpha (1 - \sin^4 \alpha) - 2 \tan^2 \alpha \), we can break it down step by step. ### Step 1: Rewrite the expression Start with the original expression: \[ \sec^4 \alpha (1 - \sin^4 \alpha) - 2 \tan^2 \alpha \] ### Step 2: Factor \( 1 - \sin^4 \alpha \) Notice that \( 1 - \sin^4 \alpha \) can be factored using the difference of squares: \[ 1 - \sin^4 \alpha = (1 - \sin^2 \alpha)(1 + \sin^2 \alpha) \] Since \( 1 - \sin^2 \alpha = \cos^2 \alpha \), we can rewrite it as: \[ 1 - \sin^4 \alpha = \cos^2 \alpha (1 + \sin^2 \alpha) \] ### Step 3: Substitute back into the expression Substituting this back into our expression gives: \[ \sec^4 \alpha (\cos^2 \alpha (1 + \sin^2 \alpha)) - 2 \tan^2 \alpha \] ### Step 4: Simplify \( \sec^4 \alpha \) Recall that \( \sec \alpha = \frac{1}{\cos \alpha} \), so: \[ \sec^4 \alpha = \frac{1}{\cos^4 \alpha} \] Thus, we can rewrite the expression as: \[ \frac{1}{\cos^4 \alpha} (\cos^2 \alpha (1 + \sin^2 \alpha)) - 2 \tan^2 \alpha \] ### Step 5: Simplify the first term Now simplify the first term: \[ \frac{\cos^2 \alpha (1 + \sin^2 \alpha)}{\cos^4 \alpha} = \frac{1 + \sin^2 \alpha}{\cos^2 \alpha} = \sec^2 \alpha (1 + \sin^2 \alpha) \] ### Step 6: Rewrite \( \tan^2 \alpha \) Recall that \( \tan^2 \alpha = \frac{\sin^2 \alpha}{\cos^2 \alpha} \), so: \[ 2 \tan^2 \alpha = 2 \frac{\sin^2 \alpha}{\cos^2 \alpha} \] ### Step 7: Combine the terms Now we have: \[ \sec^2 \alpha (1 + \sin^2 \alpha) - 2 \frac{\sin^2 \alpha}{\cos^2 \alpha} \] ### Step 8: Use the identity \( \sec^2 \alpha = 1 + \tan^2 \alpha \) Substituting \( \sec^2 \alpha \) gives: \[ (1 + \tan^2 \alpha)(1 + \sin^2 \alpha) - 2 \tan^2 \alpha \] ### Step 9: Expand the expression Expanding this results in: \[ 1 + \tan^2 \alpha + \sin^2 \alpha + \tan^2 \alpha \sin^2 \alpha - 2 \tan^2 \alpha \] Combining like terms yields: \[ 1 + \sin^2 \alpha - \tan^2 \alpha + \tan^2 \alpha \sin^2 \alpha \] ### Step 10: Use the identity \( 1 + \sin^2 \alpha - \tan^2 \alpha = 1 \) Using the identity \( \sec^2 \alpha - \tan^2 \alpha = 1 \): \[ 1 + \sin^2 \alpha - \tan^2 \alpha = 1 \] ### Final Answer Thus, the final result simplifies to: \[ 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

(cos2 alpha)/(cos^(4)alpha-sin^(4)alpha)-(cos^(4)alpha+sin^(4)alpha)/(2-sin^(2)2 alpha)=

To prove ((1)/(sec^(2)alpha-cos^(2)alpha)+(1)/(cos ec^(2)alpha-sin^(2)alpha))cos^(2)alpha sin^(2)alpha=(1-sin^(2)alpha cos^(2)alpha)/(2+sin^(2)alpha cos^(2)alpha)

If 2sec^(2)alpha-sec^(4)alpha-2cos ec^(2)alpha+cos ec^(4)alpha=(15)/(4) then tan alpha=

2sec^(2)alpha-sec^(4)alpha-2cos ec^(2)alpha+cos ec^(4)alpha=cot^(4)alpha-tan^(4)alpha

2sec^(2)alpha-sec^(4)alpha-2csc^(2)alpha+csc^(4)alpha=

((1)/(sec^(2)alpha-cos^(2)alpha)+(1)/(cos ec^(2)alpha-sin^(2)alpha))cos^(2)alpha*sin^(2)alpha=(1-cos^(2)alpha*sin^(2)alpha)/(2+cos^(2)alpha*sin^(2)alpha)

f2sec^(2)alpha+sec^(4)alpha-2csc^(2)alpha+csc^(4)alpha=(15)/(4), then tan alpha is equal to

Show that cos^(4)alpha+2cos^(2)alpha(1-(1)/(sec^(2)alpha))=1-sin^(4)alpha

If alpha is in Ist quadrant such that sec^(2)alpha=3 , then (tan^(2)alpha-cosec^(2)alpha)/(tan^(2)alpha+cosec^(2)alpha)=?

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. cosec^(6)theta-cot^(6)theta-3cot^(2)theta.cosec^(2)theta=?

    Text Solution

    |

  2. ((cosectheta-sectheta)(cottheta-tantheta))/((cosectheta+sectheta)(sect...

    Text Solution

    |

  3. sec^(4)alpha(1-sin^(4)alpha)-2tan^(2)alpha=?

    Text Solution

    |

  4. If sintheta+costheta=sqrt(2)sin(90^(@)-theta), then cottheta=?

    Text Solution

    |

  5. If cotalpha=(15)/(8), then ((2+2sinalpha)(1-sinalpha))/((1+cosalpha)(2...

    Text Solution

    |

  6. If x=asinalphaandy=bcosalpha, then b^(2)x^(2)+a^(2)y^(2)=?

    Text Solution

    |

  7. ((cottheta)/(cottheta-cot3theta)+(tantheta)/(tantheta-tan3theta))=?

    Text Solution

    |

  8. If tantheta-cottheta=(119)/(60)" for "0^(@)ltthetaltpi//2, then the va...

    Text Solution

    |

  9. If x=2tanalpha,y=2cotalpha, then 16((1)/(4+x^(2))+(1)/(4+y^(2)))=?

    Text Solution

    |

  10. cos^(2)""(pi)/(16)+cos^(2)""(3pi)/(16)+cos^(2)""(5pi)/(16)+cos^(2)""(7...

    Text Solution

    |

  11. cos^(2)(A-B)+cos^(2)B-2cos(A-B).cosA.cosB=?

    Text Solution

    |

  12. (cot^(2)""(theta)/(2)-tan^(2)""(theta)/(2))/(cottheta.cosectheta)=?

    Text Solution

    |

  13. Prove that cos^(2)theta + cos^(2)(alpha + theta) – 2cos alpha *cos th...

    Text Solution

    |

  14. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  15. If tanx+secx=2cot(90^(@)+x), then cosecx=?

    Text Solution

    |

  16. If (1)/(cosectheta+cottheta)-cosectheta-tantheta=3ksecthetacosectheta,...

    Text Solution

    |

  17. If tantheta=(11)/(13), then find (5sintheta-3costheta)/(5sintheta+2cos...

    Text Solution

    |

  18. If 7sin^(2)theta+3cos^(2)theta=4, then value of tantheta.

    Text Solution

    |

  19. (1+cottheta-cosectheta)(1+tantheta+sectheta)=?

    Text Solution

    |

  20. (cosec-sinx)(secx-cosx)(tanx+cotx)=?

    Text Solution

    |