Home
Class 14
MATHS
If tantheta-cottheta=(119)/(60)" for "0^...

If `tantheta-cottheta=(119)/(60)" for "0^(@)ltthetaltpi//2`, then the value of `sintheta+costheta`.

A

`(17)/(13)`

B

`(21)/(13)`

C

`(19)/(13)`

D

`(23)/(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta - \cot \theta = \frac{119}{60} \) for \( 0 < \theta < \frac{\pi}{2} \) and find the value of \( \sin \theta + \cos \theta \), we can follow these steps: ### Step 1: Rewrite the equation We know that \( \cot \theta = \frac{1}{\tan \theta} \). So we can rewrite the equation as: \[ \tan \theta - \frac{1}{\tan \theta} = \frac{119}{60} \] ### Step 2: Multiply through by \( \tan \theta \) To eliminate the fraction, we multiply both sides by \( \tan \theta \): \[ \tan^2 \theta - 1 = \frac{119}{60} \tan \theta \] ### Step 3: Rearrange the equation Rearranging gives us: \[ \tan^2 \theta - \frac{119}{60} \tan \theta - 1 = 0 \] ### Step 4: Let \( x = \tan \theta \) Let \( x = \tan \theta \). The equation becomes: \[ x^2 - \frac{119}{60} x - 1 = 0 \] ### Step 5: Use the quadratic formula Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = -\frac{119}{60}, c = -1 \): \[ x = \frac{\frac{119}{60} \pm \sqrt{\left(\frac{119}{60}\right)^2 + 4}}{2} \] ### Step 6: Simplify the discriminant Calculating the discriminant: \[ \left(\frac{119}{60}\right)^2 + 4 = \frac{14161}{3600} + \frac{14400}{3600} = \frac{28561}{3600} \] Taking the square root: \[ \sqrt{\frac{28561}{3600}} = \frac{169}{60} \] ### Step 7: Substitute back into the formula Now substituting back into the quadratic formula: \[ x = \frac{\frac{119}{60} \pm \frac{169}{60}}{2} \] This gives us two possible values: \[ x = \frac{288}{120} \quad \text{or} \quad x = \frac{-50}{120} \] Since \( x = \tan \theta \) must be positive in the interval \( 0 < \theta < \frac{\pi}{2} \), we take: \[ x = \frac{288}{120} = \frac{12}{5} \] ### Step 8: Find \( \sin \theta \) and \( \cos \theta \) Using the triangle ratios, we have: - Opposite side = 12 - Adjacent side = 5 - Hypotenuse = \( \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = 13 \) Thus: \[ \sin \theta = \frac{12}{13}, \quad \cos \theta = \frac{5}{13} \] ### Step 9: Calculate \( \sin \theta + \cos \theta \) Now we can find: \[ \sin \theta + \cos \theta = \frac{12}{13} + \frac{5}{13} = \frac{12 + 5}{13} = \frac{17}{13} \] ### Final Answer The value of \( \sin \theta + \cos \theta \) is: \[ \frac{17}{13} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If tantheta-cottheta=0(0^(@)ltthetalt90^(@)) , then the value of sintheta-costheta is

If 3costheta-sintheta=(1)/(sqrt(2)),(0^(@)ltthetalt90^(@)) , then the value of 3sintheta+2costheta .

If tantheta-cottheta=0 , find the value of sintheta+costheta .

If 4-2sin^(2)theta-5costheta=0,0^(@)ltthetalt90^(@) , then the value of (sintheta+tantheta) is :

If 2costheta-sintheta=(1)/(sqrt(2)),(0^(@)ltthetalt90^(@)) the value of 2sintheta+costheta is

Find the value of cottheta*sintheta*sectheta .

If (tantheta+cottheta)/(tantheta-cottheta)=2,(0^(@)lethetale90^(@)) , then the value of sintheta is

If costheta=(3)/(5) , then the value of sintheta.sectheta.tantheta is

If cottheta=2 costheta , where (pi//2)ltthetaltpi , then what is the value of theta ?

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If x=asinalphaandy=bcosalpha, then b^(2)x^(2)+a^(2)y^(2)=?

    Text Solution

    |

  2. ((cottheta)/(cottheta-cot3theta)+(tantheta)/(tantheta-tan3theta))=?

    Text Solution

    |

  3. If tantheta-cottheta=(119)/(60)" for "0^(@)ltthetaltpi//2, then the va...

    Text Solution

    |

  4. If x=2tanalpha,y=2cotalpha, then 16((1)/(4+x^(2))+(1)/(4+y^(2)))=?

    Text Solution

    |

  5. cos^(2)""(pi)/(16)+cos^(2)""(3pi)/(16)+cos^(2)""(5pi)/(16)+cos^(2)""(7...

    Text Solution

    |

  6. cos^(2)(A-B)+cos^(2)B-2cos(A-B).cosA.cosB=?

    Text Solution

    |

  7. (cot^(2)""(theta)/(2)-tan^(2)""(theta)/(2))/(cottheta.cosectheta)=?

    Text Solution

    |

  8. Prove that cos^(2)theta + cos^(2)(alpha + theta) – 2cos alpha *cos th...

    Text Solution

    |

  9. If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta...

    Text Solution

    |

  10. If tanx+secx=2cot(90^(@)+x), then cosecx=?

    Text Solution

    |

  11. If (1)/(cosectheta+cottheta)-cosectheta-tantheta=3ksecthetacosectheta,...

    Text Solution

    |

  12. If tantheta=(11)/(13), then find (5sintheta-3costheta)/(5sintheta+2cos...

    Text Solution

    |

  13. If 7sin^(2)theta+3cos^(2)theta=4, then value of tantheta.

    Text Solution

    |

  14. (1+cottheta-cosectheta)(1+tantheta+sectheta)=?

    Text Solution

    |

  15. (cosec-sinx)(secx-cosx)(tanx+cotx)=?

    Text Solution

    |

  16. ((cottheta)/(cottheta-cot3theta)+(tantheta)/(tantheta-tan3theta))=?

    Text Solution

    |

  17. "(cotA+cosecA-1)"/"(cotA-cosecA+1)"=?

    Text Solution

    |

  18. (sintheta+sin2theta)/(1+costheta+cos2theta)=?

    Text Solution

    |

  19. For which values of x between 0and2pi, then 2cosec2x cot x-cot^(2)x=1 ...

    Text Solution

    |

  20. Which of the following is not true?

    Text Solution

    |