Home
Class 14
MATHS
(sintheta+sin2theta)/(1+costheta+cos2the...

`(sintheta+sin2theta)/(1+costheta+cos2theta)=?`

A

`tantheta`

B

`sintheta`

C

`costheta`

D

`tan^(2)theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin \theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta}\), we will follow these steps: ### Step 1: Substitute \(\sin 2\theta\) and \(\cos 2\theta\) We know that: \[ \sin 2\theta = 2 \sin \theta \cos \theta \] \[ \cos 2\theta = 2 \cos^2 \theta - 1 \] Substituting these into the expression gives: \[ \frac{\sin \theta + 2 \sin \theta \cos \theta}{1 + \cos \theta + (2 \cos^2 \theta - 1)} \] ### Step 2: Simplify the denominator The denominator simplifies as follows: \[ 1 + \cos \theta + 2 \cos^2 \theta - 1 = \cos \theta + 2 \cos^2 \theta \] So now our expression looks like: \[ \frac{\sin \theta (1 + 2 \cos \theta)}{\cos \theta + 2 \cos^2 \theta} \] ### Step 3: Factor out common terms In the denominator, we can factor out \(\cos \theta\): \[ \cos \theta + 2 \cos^2 \theta = \cos \theta(1 + 2 \cos \theta) \] Thus, our expression becomes: \[ \frac{\sin \theta (1 + 2 \cos \theta)}{\cos \theta (1 + 2 \cos \theta)} \] ### Step 4: Cancel common terms We can cancel \(1 + 2 \cos \theta\) from the numerator and the denominator (assuming \(1 + 2 \cos \theta \neq 0\)): \[ \frac{\sin \theta}{\cos \theta} \] ### Step 5: Final result This simplifies to: \[ \tan \theta \] Thus, the final answer is: \[ \frac{\sin \theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta} = \tan \theta \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

For -pi/2 lt theta lt pi/2, (sintheta + sin 2theta)/(1+costheta + cos2theta) lies in the interval

Prove the following Identities (1+sin theta-costheta)/(1+ sintheta+costheta)= tan(theta/2)

What is the simplified value of (2sin^(3)theta-sintheta)/(costheta-2cos^(3)theta) ?

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

Find the values of theta , for which cos3theta + sin3theta + (2sin2theta-3)(sintheta-costheta) is always positive.

The value of (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta) is equal to

Prove that : (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta)-tantheta

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

If 21 tan theta=20 , then (1+sintheta+costheta):(1-sin theta+cos theta)=?

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1