Home
Class 14
MATHS
If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(...

If `sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5))`, where A and B are positive acute angles, then `A+B=?`

A

`pi`

B

`(pi)/(2)`

C

`(pi)/(4)`

D

`(pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin A = \frac{1}{\sqrt{10}} \) and \( \sin B = \frac{1}{\sqrt{5}} \), we need to find \( A + B \). ### Step-by-Step Solution: 1. **Identify the values of \( \sin A \) and \( \sin B \)**: \[ \sin A = \frac{1}{\sqrt{10}}, \quad \sin B = \frac{1}{\sqrt{5}} \] 2. **Calculate \( \cos A \) using the Pythagorean identity**: We know that \( \sin^2 A + \cos^2 A = 1 \). Therefore, \[ \cos^2 A = 1 - \sin^2 A = 1 - \left(\frac{1}{\sqrt{10}}\right)^2 = 1 - \frac{1}{10} = \frac{9}{10} \] Thus, \[ \cos A = \sqrt{\frac{9}{10}} = \frac{3}{\sqrt{10}} \] 3. **Calculate \( \cos B \) using the same identity**: Similarly, for \( B \), \[ \cos^2 B = 1 - \sin^2 B = 1 - \left(\frac{1}{\sqrt{5}}\right)^2 = 1 - \frac{1}{5} = \frac{4}{5} \] Thus, \[ \cos B = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} \] 4. **Use the sine addition formula**: The sine addition formula states: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] Substituting the known values: \[ \sin(A + B) = \left(\frac{1}{\sqrt{10}}\right) \left(\frac{2}{\sqrt{5}}\right) + \left(\frac{3}{\sqrt{10}}\right) \left(\frac{1}{\sqrt{5}}\right) \] 5. **Calculate each term**: \[ \sin(A + B) = \frac{2}{\sqrt{10} \cdot \sqrt{5}} + \frac{3}{\sqrt{10} \cdot \sqrt{5}} = \frac{2 + 3}{\sqrt{10} \cdot \sqrt{5}} = \frac{5}{\sqrt{10} \cdot \sqrt{5}} = \frac{5}{\sqrt{50}} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}} \] 6. **Determine \( A + B \)**: Since \( \sin(A + B) = \frac{1}{\sqrt{2}} \), we know that: \[ A + B = \frac{\pi}{4} + n\pi \quad \text{(for any integer } n\text{)} \] Given that \( A \) and \( B \) are acute angles, we take \( n = 1 \): \[ A + B = \frac{\pi}{4} + \frac{\pi}{2} = \frac{5\pi}{4} \] ### Final Answer: \[ A + B = \frac{5\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If sin A=(1)/(sqrt(10)) and sin B=(1)/(sqrt(5)), where A and B are positive acute angles,then A+B is equal to

If sin A=(2)/(sqrt(5)) and cos B=(1)/(sqrt(10)), where A and B are acute angles,then what is the value of A+B

alpha=(1)/(sqrt(10))*sin beta=(1)/(sqrt(5)) (where alpha,beta and alpha+beta are positive acute angles) show that alpha+beta=(pi)/(4)

If A and B are acute angles and sinA=cosB then A+B=

If sin A = 1/ sqrt(5) , cos B = 3/ sqrt(10) , A, B being positive acute angles, then what is (A + B) equal to ?

If cos A =(5)/(13) , and sin B=(4)/(5) , find sin (A+B), where A,B,(A+B) are positive acute angles.

0

0