Home
Class 14
MATHS
If (x)/(a)costheta+(y)/(b)sintheta=1&(x)...

If `(x)/(a)costheta+(y)/(b)sintheta=1&(x)/(a)sintheta-(y)/(b)costheta=1`. Then

A

`(x^(2))/(a^(2))+(y^(2))/(b^(2))=0`

B

`(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`

C

`(x^(2))/(a^(2))+(y^(2))/(b^(2))=-1`

D

`(x^(2))/(a^(2))+(y^(2))/(b^(2))=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations: 1. **Write down the equations:** \[ \frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1 \tag{1} \] \[ \frac{x}{a} \sin \theta - \frac{y}{b} \cos \theta = 1 \tag{2} \] 2. **Identify coefficients:** From equation (1), the coefficients are: - \( A = \frac{x}{a} \) (coefficient of \(\cos \theta\)) - \( B = \frac{y}{b} \) (coefficient of \(\sin \theta\)) From equation (2), the coefficients are: - \( C = \frac{x}{a} \) (coefficient of \(\sin \theta\)) - \( D = -\frac{y}{b} \) (coefficient of \(-\cos \theta\)) 3. **Recognize the pattern:** The equations can be rewritten in a form that suggests a relationship between the coefficients: \[ A \cos \theta + B \sin \theta = 1 \] \[ C \sin \theta + D \cos \theta = 1 \] Notice that \( A \) and \( D \) are related to \( C \) and \( B \) in a specific way. 4. **Apply the identity:** From the given structure of the equations, we can use the identity: \[ A^2 + B^2 = C^2 + D^2 \] where \( A = \frac{x}{a} \), \( B = \frac{y}{b} \), \( C = \frac{x}{a} \), and \( D = -\frac{y}{b} \). 5. **Substitute the coefficients:** Substitute the coefficients into the identity: \[ \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{x}{a}\right)^2 + \left(-\frac{y}{b}\right)^2 \] 6. **Simplify the equation:** This simplifies to: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2} \] which is trivially true. 7. **Final result:** The sum of the squares of the coefficients gives us: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 2 \] Thus, the final result is: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

(1-costheta)/(sintheta)+(sintheta)/(1-costheta) =___________.

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

If a costheta + b sintheta=3 and a sintheta - b costheta=4 , then a^(2)+b^(2) has the value 25

If (sintheta)/(x)=(costheta)/(y) then sintheta-costheta is equal to

If sintheta+costheta=x then sintheta-costheta=?

The value of (sintheta)/(1+costheta)+(sintheta)/(1-costheta) is :

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

If alpha, beta are roots of x^2 sintheta-(costhetasintheta+1)x+xcostheta=0 where alphaltbeta and thetaepsilon(0,pi//4) then value of sum_(n=0)^oo(alpha^n +((-1)^n)/beta^n) (A) (1-costheta)/(sintheta)+(1-sintheta)/(costheta) (B) 1/(1+costheta)+1/(1-sintheta) (C) 1/(1-costheta)+1/(1-sintheta) (D) 1/(1-costheta)-1/(1+sintheta)

If sintheta+costheta=sqrt(2)sintheta , then sintheta-costheta=?