Home
Class 14
MATHS
(cosectheta-sintheta)(sectheta-costheta)...

`(cosectheta-sintheta)(sectheta-costheta)(tantheta+cottheta)=?`

A

`-1`

B

1

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((\csc \theta - \sin \theta)(\sec \theta - \cos \theta)(\tan \theta + \cot \theta)\), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We will express the trigonometric functions in terms of sine and cosine: - \(\csc \theta = \frac{1}{\sin \theta}\) - \(\sec \theta = \frac{1}{\cos \theta}\) - \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) - \(\cot \theta = \frac{\cos \theta}{\sin \theta}\) Thus, the expression becomes: \[ \left(\frac{1}{\sin \theta} - \sin \theta\right)\left(\frac{1}{\cos \theta} - \cos \theta\right)\left(\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}\right) \] ### Step 2: Simplify each bracket 1. For \(\frac{1}{\sin \theta} - \sin \theta\): \[ = \frac{1 - \sin^2 \theta}{\sin \theta} = \frac{\cos^2 \theta}{\sin \theta} \] 2. For \(\frac{1}{\cos \theta} - \cos \theta\): \[ = \frac{1 - \cos^2 \theta}{\cos \theta} = \frac{\sin^2 \theta}{\cos \theta} \] 3. For \(\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}\): \[ = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta} \] ### Step 3: Combine the simplified parts Now we substitute back into the expression: \[ \left(\frac{\cos^2 \theta}{\sin \theta}\right)\left(\frac{\sin^2 \theta}{\cos \theta}\right)\left(\frac{1}{\sin \theta \cos \theta}\right) \] ### Step 4: Multiply the fractions Combining these fractions: \[ = \frac{\cos^2 \theta \cdot \sin^2 \theta \cdot 1}{\sin \theta \cdot \cos \theta \cdot \sin \theta \cdot \cos \theta} \] \[ = \frac{\cos^2 \theta \sin^2 \theta}{\sin^2 \theta \cos^2 \theta} \] ### Step 5: Simplify the expression The \(\sin^2 \theta\) and \(\cos^2 \theta\) in the numerator and denominator cancel out: \[ = 1 \] ### Final Answer Thus, the value of the expression \((\csc \theta - \sin \theta)(\sec \theta - \cos \theta)(\tan \theta + \cot \theta)\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

(csctheta-sintheta")(sectheta-costheta)(tantheta+cottheta)=

What is the value of (sectheta-costheta)("cosec"theta-sintheta)(cottheta+tantheta) ?

(1+cottheta-cosectheta)(1+tantheta+sectheta)=?

(costheta*csctheta-sintheta*sectheta)/(costheta+sintheta)

Solve: tantheta+sectheta=2costheta

((cosectheta-sectheta)(cottheta-tantheta))/((cosectheta+sectheta)(sectheta.cosectheta-2))=?

Pove that- sectheta-tantheta=1/(sectheta+tantheta)=(1-sintheta)/costheta

Prove that (sectheta +cosectheta)(sintheta+costheta)=2+secthetacosectheta

7cosectheta+24sectheta=25cosecthetasectheta , then costheta=?

If theta epsilon (0, pi/2) then the value of |((sintheta+cosectheta)^2, (sintheta- cosectheta)^2,1 ),((costheta+sectheta)^2, (costheta-sectheta)^2, 1),((tantheta+cottheta)^2, (tantheta-cottheta)^2, 1)|= (A) sintheta+costhetas+tantheta (B) 1 (C) 0 (D) 4