Home
Class 14
MATHS
If cosectheta-cottheta=q, then cosecthet...

If `cosectheta-cottheta=q`, then `cosectheta=?`

A

`(1)/(q)`

B

`q+(1)/(q)`

C

`(1)/(2q)`

D

`(1)/(2)(q+(1)/(q))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \csc \theta - \cot \theta = q \) for \( \csc \theta \), we can follow these steps: ### Step 1: Rewrite the given equation We start with the equation: \[ \csc \theta - \cot \theta = q \] ### Step 2: Express \(\csc \theta\) and \(\cot \theta\) in terms of sine and cosine Recall the definitions: \[ \csc \theta = \frac{1}{\sin \theta} \quad \text{and} \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \] Substituting these into the equation gives: \[ \frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta} = q \] ### Step 3: Combine the fractions Since both terms on the left side have a common denominator, we can combine them: \[ \frac{1 - \cos \theta}{\sin \theta} = q \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ 1 - \cos \theta = q \sin \theta \] ### Step 5: Isolate \(\cos \theta\) Rearranging the equation to isolate \(\cos \theta\): \[ \cos \theta = 1 - q \sin \theta \] ### Step 6: Use the Pythagorean identity We know that \(\sin^2 \theta + \cos^2 \theta = 1\). We can substitute \(\cos \theta\) from the previous step into this identity: \[ \sin^2 \theta + (1 - q \sin \theta)^2 = 1 \] ### Step 7: Expand and simplify Expanding the squared term: \[ \sin^2 \theta + (1 - 2q \sin \theta + q^2 \sin^2 \theta) = 1 \] Combining like terms: \[ (1 + q^2)\sin^2 \theta - 2q \sin \theta + 1 - 1 = 0 \] This simplifies to: \[ (1 + q^2)\sin^2 \theta - 2q \sin \theta = 0 \] ### Step 8: Factor the equation Factoring out \(\sin \theta\): \[ \sin \theta \left((1 + q^2)\sin \theta - 2q\right) = 0 \] ### Step 9: Solve for \(\sin \theta\) Setting each factor to zero gives: 1. \(\sin \theta = 0\) (not valid in this context) 2. \((1 + q^2)\sin \theta - 2q = 0\) From the second factor: \[ (1 + q^2)\sin \theta = 2q \] Thus, \[ \sin \theta = \frac{2q}{1 + q^2} \] ### Step 10: Substitute back to find \(\csc \theta\) Now, we can find \(\csc \theta\): \[ \csc \theta = \frac{1}{\sin \theta} = \frac{1 + q^2}{2q} \] ### Final Answer Thus, the value of \(\csc \theta\) is: \[ \csc \theta = \frac{1 + q^2}{2q} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If cosectheta+cottheta=2 , then cottheta=?

(cosectheta-cottheta)^2=

(cosectheta+cottheta)^2=

If cosectheta+cottheta=3, " then find " costheta .

cosectheta=4/5 cottheta=?

If 8sectheta+6cosectheta=20 , then cottheta=?

If cosectheta-cottheta=q , then the value of cosectheta is

If 3cosectheta-7cot theta=3 , then find 3cottheta-7cosectheta=?

The inverse of the matrix [[cosectheta, -cottheta], [-cottheta, cosectheta]] is

If cosectheta + cottheta=p , then prove that the cos theta=(p^2-1)/(p^2+1)