Home
Class 14
MATHS
If sintheta=(m^(2)-n^(2))/(m^(2)+n^(2)),...

If `sintheta=(m^(2)-n^(2))/(m^(2)+n^(2))`, then `tantheta=?`

A

`(m^(2)+n^(2))/(2mn)`

B

`(m^(2)-n^(2))/(2mn)`

C

`(m^(2)+n^(2))/(m^(2)-n^(2))`

D

`(m^(2)-n^(2))/(m^(2)+n^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin \theta = \frac{m^2 - n^2}{m^2 + n^2} \) and we need to find \( \tan \theta \), we can follow these steps: ### Step 1: Use the Pythagorean Identity We know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] We will use this identity to find \( \cos^2 \theta \). ### Step 2: Calculate \( \sin^2 \theta \) First, we calculate \( \sin^2 \theta \): \[ \sin^2 \theta = \left(\frac{m^2 - n^2}{m^2 + n^2}\right)^2 = \frac{(m^2 - n^2)^2}{(m^2 + n^2)^2} \] ### Step 3: Substitute \( \sin^2 \theta \) into the Pythagorean Identity Now we substitute \( \sin^2 \theta \) into the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] This gives us: \[ \frac{(m^2 - n^2)^2}{(m^2 + n^2)^2} + \cos^2 \theta = 1 \] ### Step 4: Isolate \( \cos^2 \theta \) Rearranging the equation, we find: \[ \cos^2 \theta = 1 - \frac{(m^2 - n^2)^2}{(m^2 + n^2)^2} \] To combine the terms, we can express 1 as: \[ 1 = \frac{(m^2 + n^2)^2}{(m^2 + n^2)^2} \] So we have: \[ \cos^2 \theta = \frac{(m^2 + n^2)^2 - (m^2 - n^2)^2}{(m^2 + n^2)^2} \] ### Step 5: Simplify the Numerator Using the difference of squares: \[ a^2 - b^2 = (a - b)(a + b) \] Let \( a = m^2 + n^2 \) and \( b = m^2 - n^2 \): \[ (m^2 + n^2 - (m^2 - n^2))(m^2 + n^2 + (m^2 - n^2)) = (2n^2)(2m^2) = 4m^2n^2 \] Thus, we have: \[ \cos^2 \theta = \frac{4m^2n^2}{(m^2 + n^2)^2} \] ### Step 6: Calculate \( \cos \theta \) Taking the square root gives us: \[ \cos \theta = \frac{2mn}{m^2 + n^2} \] ### Step 7: Find \( \tan \theta \) Now we can find \( \tan \theta \) using the definition: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{m^2 - n^2}{m^2 + n^2}}{\frac{2mn}{m^2 + n^2}} \] This simplifies to: \[ \tan \theta = \frac{m^2 - n^2}{2mn} \] ### Final Result Thus, the value of \( \tan \theta \) is: \[ \tan \theta = \frac{m^2 - n^2}{2mn} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

(m^(2)-n^(2))^(2)+2m^(2)n^(2)

If tan theta=(m)/(n) , show that (m sin theta-n cos theta)/(m sin theta+n cos theta)=(m^(2)-n^(2))/(m^(2)+n^(2))

If (a^(2)-b^(2))sintheta+2abcostheta=a^(2)+b^(2) ,then tantheta= ?

If (m+n)/(m-n)=7/3 then (m^2-n^2)/(m^2+n^2)=

(m)/(n)x^(2)+(n)/(m)=1-2x

If tantheta +sintheta = m and tantheta-sintheta=n , then prove that m^(2)-n^(2)=4sinthetatantheta .

If m and n are distinct natural numbers, then which of the following is/are integer/integers? 1. (m)/(n) +(n)/(m) 2. mn ((m)/(n)+(n)/(m)) (m^(2)+n^(2))^(-1) 3. (mn)/(m^(2)+n^(2)) Select the correct answer using the code given below.

If cosectheta-sintheta=mandsectheta-costheta=n , then (m^(2)n)^((2)/(3))+(mn^(2))^((2)/(3))=?

If tan theta+sin theta=m and tan theta-sin theta=n then m^(2)-n^(2)=4mn(b)m^(2)+n^(2)=4mnm^(2)-n^(2)=m^(2)+n^(2)(d)m^(2)-n^(2)=4sqrt(mn)