Home
Class 14
MATHS
cos15^(@)=?...

`cos15^(@)=?`

A

`sqrt((1+cos30^(@))/(2))`

B

`sqrt((1-cos30^(@))/(2))`

C

`pmsqrt((1+cos30^(@))/(2))`

D

`pmsqrt((1-cos30^(@))/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos 15^\circ \), we can use the cosine of a double angle identity and some known values of cosine. Here’s a step-by-step solution: ### Step 1: Use the Cosine Double Angle Identity We know that: \[ \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \] We can also express this as: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] ### Step 2: Set \( \theta = 15^\circ \) Let’s set \( \theta = 15^\circ \). Therefore, \( 2\theta = 30^\circ \). ### Step 3: Substitute into the Identity Using the identity: \[ \cos(30^\circ) = 2\cos^2(15^\circ) - 1 \] We know that \( \cos(30^\circ) = \frac{\sqrt{3}}{2} \). ### Step 4: Set Up the Equation Now we can set up the equation: \[ \frac{\sqrt{3}}{2} = 2\cos^2(15^\circ) - 1 \] ### Step 5: Solve for \( \cos^2(15^\circ) \) Rearranging the equation gives: \[ 2\cos^2(15^\circ) = \frac{\sqrt{3}}{2} + 1 \] \[ 2\cos^2(15^\circ) = \frac{\sqrt{3}}{2} + \frac{2}{2} = \frac{\sqrt{3} + 2}{2} \] Now divide both sides by 2: \[ \cos^2(15^\circ) = \frac{\sqrt{3} + 2}{4} \] ### Step 6: Take the Square Root Now, take the square root to find \( \cos(15^\circ) \): \[ \cos(15^\circ) = \sqrt{\frac{\sqrt{3} + 2}{4}} = \frac{\sqrt{\sqrt{3} + 2}}{2} \] ### Final Answer Thus, the value of \( \cos 15^\circ \) is: \[ \cos(15^\circ) = \frac{\sqrt{\sqrt{3} + 2}}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

cos 15^(@)

|["cos"15^(@), "sin"15^(@)], ["sin"15^(@), "cos"15^(@)]|=?

What is the value of cos 15^(@) ?

Find the value of the cos 15^(@) .

The value of (cos 15^(@) - sin 15^(@))/(cos 15^(@) + sin 15^(@) is

The value of cos 15^(@) - sin 15^(@) is

The value of cos 15^(@) - sin 15^(@) is equal to

The value of cos 75^(@) cos 15^(@) is equal to