Home
Class 14
MATHS
If sinA=sinBandcosA=cosB then...

If `sinA=sinBandcosA=cosB` then

A

`sin((A-B)/(2))=0`

B

`sin((A+B)/(2))=0`

C

`cos((A-B)/(2))=0`

D

`cos((A+B)/(2))=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin A = \sin B \) and \( \cos A = \cos B \), we can follow these steps: ### Step 1: Set up the equations Given: \[ \sin A = \sin B \] \[ \cos A = \cos B \] ### Step 2: Use the sine and cosine subtraction formulas From the sine equation, we can rewrite it as: \[ \sin A - \sin B = 0 \] Using the sine subtraction formula: \[ \sin A - \sin B = 2 \sin\left(\frac{A - B}{2}\right) \cos\left(\frac{A + B}{2}\right) = 0 \] ### Step 3: Analyze the sine equation For the product to be zero, either: 1. \( \sin\left(\frac{A - B}{2}\right) = 0 \) or 2. \( \cos\left(\frac{A + B}{2}\right) = 0 \) ### Step 4: Use the cosine equation Similarly, for the cosine equation: \[ \cos A - \cos B = 0 \] Using the cosine subtraction formula: \[ \cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) = 0 \] ### Step 5: Analyze the cosine equation For this product to be zero, either: 1. \( \sin\left(\frac{A + B}{2}\right) = 0 \) or 2. \( \sin\left(\frac{A - B}{2}\right) = 0 \) ### Step 6: Combine the results From both equations, we see that \( \sin\left(\frac{A - B}{2}\right) = 0 \) is a common factor. This implies: \[ \frac{A - B}{2} = n\pi \quad \text{for some integer } n \] Thus, \[ A - B = 2n\pi \] This means: \[ A = B + 2n\pi \] ### Step 7: Conclusion Since both sine and cosine functions are periodic, we conclude that: \[ A = B + 2n\pi \quad \text{or} \quad A = \pi - B + 2n\pi \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If sinA=sinB and cosA=cosB , then prove that sin. (A-B)/(2)=0 .

If sinA = sinB and cosA=cosB, then which one of the following is correct ?

Statement I: If sinA=sinB , cosA=cosB then A= 2np + B Statement II :If A+B+C=90^@ then sin2A+sin2B + sin2C = 4 sinA sinB sinC Which of the above statements is correct?

If sinA+sinB=a and cosA+cosB=b then prove that sin(A+B)=(2ab)/(a^2+b^2) and cos(A+B)=(b^2-a^2)/(a^2+b^2)

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

If sinA+sinB=C,cosA+cosB=D , then the value of sin(A+B) =

If sinA+sinB=C,&cosA+cosB=D , then sin(A+B)=?

If (2sinA)/(1+sinA+cosA)=k then (1+sinA-cosA)/(1+sinA)=

In a triangleABC , if sinA - cosB = cos C , then the measured of angleB is