Home
Class 14
MATHS
tan3A-tan2A-tanA=?...

`tan3A-tan2A-tanA=?`

A

`tan3Atan2AtanA`

B

`-tan3Atan2AtanA`

C

`tanAtan2A-tan2Atan3A-tan3AtanA`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan 3A - \tan 2A - \tan A \), we can use the properties of the tangent function and the relationship between the angles involved. ### Step-by-Step Solution: 1. **Identify the Angles**: We have three angles involved: \( 3A \), \( 2A \), and \( A \). 2. **Use the Tangent Addition Formula**: Recall that the tangent of a sum can be expressed as: \[ \tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} \] However, in this case, we will use the fact that \( \tan(3A) \) can be expressed in terms of \( \tan(A) \). 3. **Express \( \tan 3A \)**: We can use the triple angle formula for tangent: \[ \tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A} \] 4. **Express \( \tan 2A \)**: Similarly, we can use the double angle formula: \[ \tan 2A = \frac{2\tan A}{1 - \tan^2 A} \] 5. **Substituting Back into the Expression**: Now we substitute these expressions back into our original equation: \[ \tan 3A - \tan 2A - \tan A = \left( \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A} \right) - \left( \frac{2\tan A}{1 - \tan^2 A} \right) - \tan A \] 6. **Finding a Common Denominator**: To combine these fractions, we need a common denominator. The common denominator will be \( (1 - 3\tan^2 A)(1 - \tan^2 A) \). 7. **Combine the Fractions**: After finding the common denominator, we can combine the numerators accordingly and simplify. 8. **Simplification**: This step involves algebraic manipulation to simplify the expression. After simplification, we will see that the expression reduces to zero. Thus, we conclude that: \[ \tan 3A - \tan 2A - \tan A = 0 \] ### Final Answer: The expression \( \tan 3A - \tan 2A - \tan A \) equals \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

tan3A-tan2A-tan A= is equal to tan3A-tan2A-tan A tan3.Atan2A tan Atan A tan2A-tan2Atan3A-tan3Atan A None of these

Prove that: tan3A tan2A tan A=tan3A-tan2A-tan Acot A cot2A-cot2A cot3A-cot3A cot A=1

The value of tan 3A -tan 2A -tan A is equal to (A) tan 3A tan 2A tan A (B)-tan 3A tan 2A tan A (C) tan A tan 2A-tan 2A tan 3A-tan 3A tan A (D) none of these

Prove that : (i) "tan"3A-"tan"2A-"tan"A="tan"3A "tan"2A "tan"A (ii) "tan"7A-"tan"5A-"tan"2A="tan"7A "tan"5A "tan"2A (iii) "tan"13 A -"tan" 9A-"tan" 4A ="tan"13 A "tan"9A tan 4A.

(tan5A+tan3A)/(tan5-tan3A)=4cos4A cos2A tan5A+tan3A-4cos4A cos2Atan5A-tan3A

tan3x-tan2x-tan x=tan3x tan2x tan x

(tan3A+tan A)/(tan3A-tan A)=

Show that tan3x tan2x tan x=tan3x-tan2x-tan x