Home
Class 14
MATHS
cos^(2)A(3-4cos^(2)A)^(2)+sin^(2)A(3-4si...

`cos^(2)A(3-4cos^(2)A)^(2)+sin^(2)A(3-4sin^(2)A)^(2)=?`

A

1

B

sin4A

C

cos4A

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^2 A (3 - 4 \cos^2 A)^2 + \sin^2 A (3 - 4 \sin^2 A)^2 \), we can follow these steps: ### Step 1: Identify the terms We have two main components in the expression: 1. \( \cos^2 A (3 - 4 \cos^2 A)^2 \) 2. \( \sin^2 A (3 - 4 \sin^2 A)^2 \) ### Step 2: Rewrite the expression We can rewrite the expression as: \[ \cos^2 A \cdot (3 - 4 \cos^2 A)^2 + \sin^2 A \cdot (3 - 4 \sin^2 A)^2 \] ### Step 3: Expand the squares Now, we will expand both squares: 1. For \( (3 - 4 \cos^2 A)^2 \): \[ (3 - 4 \cos^2 A)^2 = 9 - 24 \cos^2 A + 16 \cos^4 A \] 2. For \( (3 - 4 \sin^2 A)^2 \): \[ (3 - 4 \sin^2 A)^2 = 9 - 24 \sin^2 A + 16 \sin^4 A \] ### Step 4: Substitute back into the expression Substituting these expansions back into the original expression gives: \[ \cos^2 A (9 - 24 \cos^2 A + 16 \cos^4 A) + \sin^2 A (9 - 24 \sin^2 A + 16 \sin^4 A) \] ### Step 5: Distribute \( \cos^2 A \) and \( \sin^2 A \) Now, distribute \( \cos^2 A \) and \( \sin^2 A \): \[ 9 \cos^2 A - 24 \cos^4 A + 16 \cos^6 A + 9 \sin^2 A - 24 \sin^4 A + 16 \sin^6 A \] ### Step 6: Combine like terms Combine the terms involving \( \cos^2 A \) and \( \sin^2 A \): \[ 9 (\cos^2 A + \sin^2 A) - 24 (\cos^4 A + \sin^4 A) + 16 (\cos^6 A + \sin^6 A) \] ### Step 7: Use the Pythagorean identity Using the identity \( \cos^2 A + \sin^2 A = 1 \): \[ 9 \cdot 1 - 24 (\cos^4 A + \sin^4 A) + 16 (\cos^6 A + \sin^6 A) \] ### Step 8: Simplify further Now we need to simplify \( \cos^4 A + \sin^4 A \) and \( \cos^6 A + \sin^6 A \): 1. \( \cos^4 A + \sin^4 A = (\cos^2 A + \sin^2 A)^2 - 2 \cos^2 A \sin^2 A = 1 - 2 \cos^2 A \sin^2 A \) 2. \( \cos^6 A + \sin^6 A = (\cos^2 A + \sin^2 A)(\cos^4 A + \sin^4 A - \cos^2 A \sin^2 A) = 1 \cdot \left( (1 - 2 \cos^2 A \sin^2 A) - \cos^2 A \sin^2 A \right) = 1 - 3 \cos^2 A \sin^2 A \) ### Step 9: Substitute back Substituting these back: \[ 9 - 24(1 - 2 \cos^2 A \sin^2 A) + 16(1 - 3 \cos^2 A \sin^2 A) \] \[ = 9 - 24 + 48 \cos^2 A \sin^2 A + 16 - 48 \cos^2 A \sin^2 A \] \[ = 1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[cos^(2)x(3-4cos^(2)x)^(2)]+(d)/(dx)[sin^(2)(3-4sin^(2)x)^(2)]=

[cos^(2)theta(3-4cos^(2)theta)^(2)+sin^(2)theta(3-4sin^(2)theta)^(2)=

cos^(2)theta(3-4cos^(2)theta)^(2)+sin^(2)theta(4sin^(2)theta-3)^(2)=

(sin^(2)3A)/(sin^(2)A)-(cos^(2)3A)/(cos^(2)A)=

int(4cos^(2)x-3sin^(2)x)/(sin^(2)2x)d(4x)=

(sin^(2)3A)/(sin^2A)-(cos^(2)3A)/(cos^2A)=

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

Prove the following identities: sin^(4)A-cos^(4)A=sin^(2)A-cos^(2)A=2sin^(2)A-1=1-2cos^(2)A

to prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))

Prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))