Home
Class 14
MATHS
If tanalpha=(m)/(m+1)andtan beta=(1)/(2m...

If `tanalpha=(m)/(m+1)andtan beta=(1)/(2m+1)`, then `(alpha+beta)=?`

A

`(pi)/(3)`

B

`(pi)/(4)`

C

`(pi)/(6)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \tan \alpha = \frac{m}{m+1} \) and \( \tan \beta = \frac{1}{2m+1} \), we need to find \( \alpha + \beta \). ### Step-by-step Solution: 1. **Use the formula for \( \tan(\alpha + \beta) \)**: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] 2. **Substitute the values of \( \tan \alpha \) and \( \tan \beta \)**: \[ \tan(\alpha + \beta) = \frac{\frac{m}{m+1} + \frac{1}{2m+1}}{1 - \left(\frac{m}{m+1}\right)\left(\frac{1}{2m+1}\right)} \] 3. **Calculate the numerator**: - Find a common denominator for the numerator: \[ \text{Numerator} = \frac{m(2m+1) + 1(m+1)}{(m+1)(2m+1)} \] - Simplifying: \[ = \frac{2m^2 + m + m + 1}{(m+1)(2m+1)} = \frac{2m^2 + 2m + 1}{(m+1)(2m+1)} \] 4. **Calculate the denominator**: - The denominator becomes: \[ 1 - \frac{m}{m+1} \cdot \frac{1}{2m+1} = 1 - \frac{m}{(m+1)(2m+1)} \] - Finding a common denominator: \[ = \frac{(m+1)(2m+1) - m}{(m+1)(2m+1)} = \frac{2m^2 + 3m + 1 - m}{(m+1)(2m+1)} = \frac{2m^2 + 2m + 1}{(m+1)(2m+1)} \] 5. **Combine the results**: \[ \tan(\alpha + \beta) = \frac{\frac{2m^2 + 2m + 1}{(m+1)(2m+1)}}{\frac{2m^2 + 2m + 1}{(m+1)(2m+1)}} = 1 \] 6. **Determine \( \alpha + \beta \)**: - Since \( \tan(\alpha + \beta) = 1 \), we know: \[ \alpha + \beta = 45^\circ \quad \text{or} \quad \alpha + \beta = \frac{\pi}{4} \] ### Final Answer: \[ \alpha + \beta = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If tan alpha=(m)/(m+1) and tan beta=(1)/(2m+1) then alpha+beta is equal to

If tanalpha=(1)/(3)andtanbeta=(1)/(2), then: tan(alpha+beta)=

If tan alpha=(x)/(x+1) andtan beta=(1)/(2x+1), then alpha+beta is equal to (pi)/(2) b.(pi)/(3) c.(pi)/(6) d.(pi)/(4), then alpha+beta

If alpha and beta are acute angles such that tan alpha=(m)/(m+1) and tan beta=(1)/(2m+1), prove that alpha+beta=(pi)/(4)

If tan alpha=(m)/(m+1) and tan beta=(1)/(2m+1) Find the possible values of (alpha+beta)

lim alpha=(m)/(m+1),tan beta=(1)/(2m+1), prove that alpha+beta=(pi)/(4)

If tanalpha=(1+2^(-x))^(-1), tanbeta=(1+2^(x+1))^(-1) , then alpha+beta=