Home
Class 14
MATHS
The value of cos105^(@)+sin105^(@) is...

The value of `cos105^(@)+sin105^(@)` is

A

`(1)/(2)`

B

1

C

`sqrt(2)`

D

`(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos 105^\circ + \sin 105^\circ \), we can break it down into two parts: calculating \( \cos 105^\circ \) and \( \sin 105^\circ \) separately, and then adding the results together. ### Step 1: Calculate \( \cos 105^\circ \) We can express \( 105^\circ \) as \( 60^\circ + 45^\circ \). Using the cosine addition formula: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] where \( a = 60^\circ \) and \( b = 45^\circ \). Substituting the values: \[ \cos 105^\circ = \cos(60^\circ + 45^\circ) = \cos 60^\circ \cos 45^\circ - \sin 60^\circ \sin 45^\circ \] ### Step 2: Substitute known values We know: - \( \cos 60^\circ = \frac{1}{2} \) - \( \cos 45^\circ = \frac{1}{\sqrt{2}} \) - \( \sin 60^\circ = \frac{\sqrt{3}}{2} \) - \( \sin 45^\circ = \frac{1}{\sqrt{2}} \) Substituting these values into the equation: \[ \cos 105^\circ = \left(\frac{1}{2}\right) \left(\frac{1}{\sqrt{2}}\right) - \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{\sqrt{2}}\right) \] ### Step 3: Simplify the expression Calculating the first term: \[ \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2\sqrt{2}} \] Calculating the second term: \[ \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3}}{2\sqrt{2}} \] Putting it all together: \[ \cos 105^\circ = \frac{1}{2\sqrt{2}} - \frac{\sqrt{3}}{2\sqrt{2}} = \frac{1 - \sqrt{3}}{2\sqrt{2}} \] ### Step 4: Calculate \( \sin 105^\circ \) Now, we can express \( 105^\circ \) as \( 60^\circ + 45^\circ \) again but using the sine addition formula: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] Substituting the values: \[ \sin 105^\circ = \sin(60^\circ + 45^\circ) = \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ \] ### Step 5: Substitute known values again Using the same values as before: \[ \sin 105^\circ = \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{\sqrt{2}}\right) + \left(\frac{1}{2}\right) \left(\frac{1}{\sqrt{2}}\right) \] ### Step 6: Simplify the expression Calculating the first term: \[ \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3}}{2\sqrt{2}} \] Calculating the second term: \[ \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2\sqrt{2}} \] Putting it all together: \[ \sin 105^\circ = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] ### Step 7: Add \( \cos 105^\circ \) and \( \sin 105^\circ \) Now we add the two results: \[ \cos 105^\circ + \sin 105^\circ = \frac{1 - \sqrt{3}}{2\sqrt{2}} + \frac{\sqrt{3} + 1}{2\sqrt{2}} \] ### Step 8: Combine the fractions Since the denominators are the same, we can combine the numerators: \[ \cos 105^\circ + \sin 105^\circ = \frac{(1 - \sqrt{3}) + (\sqrt{3} + 1)}{2\sqrt{2}} = \frac{1 - \sqrt{3} + \sqrt{3} + 1}{2\sqrt{2}} = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Final Answer Thus, the value of \( \cos 105^\circ + \sin 105^\circ \) is: \[ \frac{1}{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

The value of cos 105^(@) is

105^(2)

The value of cos 105^@ + sin 105^@ is

The value of sin105^(@) is :

cos15^(@)+cos105^(@)=

sin105^(@)+cos105^(@)=

find the value of sin105^@

sin15^(@)+cos105^(@)=?

cos 15^@+ cos 105^@ =?

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. cosA+sin(270^(@)+A)-sin(270^(@)-A)+cos(180^(@)+A)=?

    Text Solution

    |

  2. sin15^(@)+cos105^(@)=?

    Text Solution

    |

  3. The value of cos105^(@)+sin105^(@) is

    Text Solution

    |

  4. The value of cos15^(@)-sin15^(@) is

    Text Solution

    |

  5. If xcostheta-sintheta=1, then x^(2)+(1+x^(2))sintheta equals-

    Text Solution

    |

  6. In DeltaABC,cosecA(sinBcosC+cosBsinC)=?

    Text Solution

    |

  7. If for real values of costheta=x+(1)/(x), then

    Text Solution

    |

  8. If cos A = 3/4 then the value of 32sin( A/2)* sin (5A/2) is.

    Text Solution

    |

  9. If sintheta(1)+sintheta(2)+sintheta(3)=3, then costheta(1)+costheta(2)...

    Text Solution

    |

  10. If sintheta=(24)/(25)andtheta is in second quadrant, then sectheta+tan...

    Text Solution

    |

  11. (cos17^(@)+sin17^(@))/(cos17^(@)-sin17^(@))=?

    Text Solution

    |

  12. If sinalpha=(-3)/(5), where piltalphalt(3pi)/(2), then cos""(alpha)/(2...

    Text Solution

    |

  13. The greatest value of the function sqrt(3)sinx+cosx is

    Text Solution

    |

  14. costheta(tantheta+2)(2tantheta+1)=?

    Text Solution

    |

  15. If x and y are the angles lying in the second quadrant and xlty, then ...

    Text Solution

    |

  16. If 0^(@)ltthetalt90^(@), then ((5costheta-4)/(3-5sintheta)-(3+5sinthet...

    Text Solution

    |

  17. If alpha is a positive acute angle and 2sin alpha+15cos^(2)alpha=7, th...

    Text Solution

    |

  18. If 3tantheta+4=0 where (pi)/(2)lt thetaltpi, then the value of 2cot th...

    Text Solution

    |

  19. If sec^(2)theta=3, 0^(@)ltthetalt(pi)/(2), then the value of (tan^(2)t...

    Text Solution

    |

  20. If 3costheta-sintheta=(1)/(sqrt(2)),(0^(@)ltthetalt90^(@)), then the v...

    Text Solution

    |