Home
Class 14
MATHS
If sec^(2)theta=3, 0^(@)ltthetalt(pi)/(2...

If `sec^(2)theta=3, 0^(@)ltthetalt(pi)/(2)`, then the value of `(tan^(2)theta-cosec^(2)theta)/(tan^(2)theta+cosec^(2)theta)` is

A

`(4)/(7)`

B

`(2)/(7)`

C

`(1)/(7)`

D

`(3)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: 1. \( \sec^2 \theta = 3 \) 2. We need to find the value of \( \frac{\tan^2 \theta - \csc^2 \theta}{\tan^2 \theta + \csc^2 \theta} \) ### Step 1: Find \( \sec \theta \) Since \( \sec^2 \theta = 3 \), we can find \( \sec \theta \): \[ \sec \theta = \sqrt{3} \] ### Step 2: Relate \( \sec \theta \) to the sides of a triangle Recall that \( \sec \theta = \frac{\text{hypotenuse}}{\text{base}} \). We can set up a right triangle where: - Hypotenuse = \( \sqrt{3} \) - Base = 1 To find the height (opposite side), we use the Pythagorean theorem: \[ \text{height} = \sqrt{(\text{hypotenuse})^2 - (\text{base})^2} = \sqrt{(\sqrt{3})^2 - 1^2} = \sqrt{3 - 1} = \sqrt{2} \] ### Step 3: Find \( \tan \theta \) and \( \cos \theta \) Now we can find \( \tan \theta \) and \( \cos \theta \): \[ \tan \theta = \frac{\text{height}}{\text{base}} = \frac{\sqrt{2}}{1} = \sqrt{2} \] \[ \cos \theta = \frac{\text{base}}{\text{hypotenuse}} = \frac{1}{\sqrt{3}} \] ### Step 4: Calculate \( \tan^2 \theta \) and \( \csc^2 \theta \) Now we calculate \( \tan^2 \theta \) and \( \csc^2 \theta \): \[ \tan^2 \theta = (\sqrt{2})^2 = 2 \] \[ \csc^2 \theta = \frac{1}{\sin^2 \theta} = 1 + \cot^2 \theta = 1 + \frac{1}{\tan^2 \theta} = 1 + \frac{1}{2} = \frac{3}{2} \] ### Step 5: Substitute into the expression Now substitute \( \tan^2 \theta \) and \( \csc^2 \theta \) into the expression: \[ \frac{\tan^2 \theta - \csc^2 \theta}{\tan^2 \theta + \csc^2 \theta} = \frac{2 - \frac{3}{2}}{2 + \frac{3}{2}} \] ### Step 6: Simplify the expression Calculating the numerator: \[ 2 - \frac{3}{2} = \frac{4}{2} - \frac{3}{2} = \frac{1}{2} \] Calculating the denominator: \[ 2 + \frac{3}{2} = \frac{4}{2} + \frac{3}{2} = \frac{7}{2} \] ### Step 7: Final calculation Now we have: \[ \frac{\frac{1}{2}}{\frac{7}{2}} = \frac{1}{2} \cdot \frac{2}{7} = \frac{1}{7} \] Thus, the final answer is: \[ \frac{1}{7} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

Write the value of (tan^(2)theta-sec^(2)theta)/(cot^(2)theta-"cosec"^(2)theta).

tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta

prove that tan^(2)theta+cot^(2)theta=sec^(2)theta+cosec^(2)theta-2

prove that: tan^(2) theta-cot^(2) theta=sec^(2) theta- cosec^(2) theta

(sec^(2)theta-sin^(2)theta)/(tan^(2)theta)=cosec^(2)theta-cos^(2)theta

The value of (tan theta cosec theta)^(2) - (sin theta sec theta)^(2) is:

What is the value of (tan theta cosec theta)^(2)- (sin theta sec theta)^(2) .

The value of 2 sec^(2) theta - sec^(4) theta - 2 cosec^(2)theta + cosec^(4) theta is

What is the value of (tan theta "cosec" theta )^(2) -( sin theta sec theta) ^(2)

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If alpha is a positive acute angle and 2sin alpha+15cos^(2)alpha=7, th...

    Text Solution

    |

  2. If 3tantheta+4=0 where (pi)/(2)lt thetaltpi, then the value of 2cot th...

    Text Solution

    |

  3. If sec^(2)theta=3, 0^(@)ltthetalt(pi)/(2), then the value of (tan^(2)t...

    Text Solution

    |

  4. If 3costheta-sintheta=(1)/(sqrt(2)),(0^(@)ltthetalt90^(@)), then the v...

    Text Solution

    |

  5. If tantheta-cottheta=0(0^(@)ltthetalt90^(@)), then the value of sinthe...

    Text Solution

    |

  6. If sinA+cosecA=3, then find the value of (sin^(4)A+1)/(sin^(2)A).

    Text Solution

    |

  7. cos7^(@)cos23^(@)cos45^(@)cosec83^(@)cosec67^(@)=?

    Text Solution

    |

  8. If (tantheta+cottheta)/(tantheta-cottheta)=2,(0^(@)lethetale90^(@)), t...

    Text Solution

    |

  9. If sinx+cosx=c, then sin^(6)x+cos^(6)x is equal to

    Text Solution

    |

  10. (1-sinAcosA)/(cosA(secA-cosecA)).(sin^(2)A-cos^(2)A)/(sin^(3)A+cos^(3)...

    Text Solution

    |

  11. The minimum value of 12sin^(2)theta+23cos^(2)theta is

    Text Solution

    |

  12. Find the minimum value of (sintheta+cosectheta)^(2)+(costheta+sectheta...

    Text Solution

    |

  13. Find the minimum and maximum value of 4tan^(2)theta+9cos^(2)theta.

    Text Solution

    |

  14. Find the minimum and maximum value of 7cosalpha+24sinbeta.

    Text Solution

    |

  15. Find the minimum and maximum value of 5sin^(2)theta+10cos^(2)theta+12s...

    Text Solution

    |

  16. If A-B=(pi)/(4), then (1+tanA)(1-tanB)=?

    Text Solution

    |

  17. If A+B=135^(@), then (1+cotA)(1+cotB)=?

    Text Solution

    |

  18. If sectheta=x+(1)/(4x), then find the value of sectheta+tantheta.

    Text Solution

    |

  19. If "cosec"theta=x+(1)/(4x), then find the value of "cosec"theta+cot t...

    Text Solution

    |

  20. If tantheta+sintheta=m and tan theta-sin theta=n, then find the value ...

    Text Solution

    |