Home
Class 14
MATHS
If sinx+cosx=c, then sin^(6)x+cos^(6)x i...

If `sinx+cosx=c`, then `sin^(6)x+cos^(6)x` is equal to

A

`(1+6c^(2)-3c^(4))/(16)`

B

`(1+6c^(2)-3c^(4))/(4)`

C

`(1+6c^(2)+3c^(4))/(16)`

D

`(1+6c^(2)+3c^(4))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin x + \cos x = c \) and we need to find \( \sin^6 x + \cos^6 x \), we can follow these steps: ### Step 1: Square the equation Start with the equation: \[ \sin x + \cos x = c \] Square both sides: \[ (\sin x + \cos x)^2 = c^2 \] This expands to: \[ \sin^2 x + \cos^2 x + 2\sin x \cos x = c^2 \] Since \( \sin^2 x + \cos^2 x = 1 \), we can substitute: \[ 1 + 2\sin x \cos x = c^2 \] ### Step 2: Isolate \( \sin x \cos x \) From the equation above, isolate \( 2\sin x \cos x \): \[ 2\sin x \cos x = c^2 - 1 \] Thus, we have: \[ \sin x \cos x = \frac{c^2 - 1}{2} \] ### Step 3: Express \( \sin^6 x + \cos^6 x \) Recall the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = \sin^2 x \) and \( b = \cos^2 x \). Then: \[ \sin^6 x + \cos^6 x = (\sin^2 x)^3 + (\cos^2 x)^3 = (\sin^2 x + \cos^2 x)((\sin^2 x)^2 - \sin^2 x \cos^2 x + (\cos^2 x)^2) \] Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \sin^6 x + \cos^6 x = 1 \cdot ((\sin^2 x)^2 + (\cos^2 x)^2 - \sin^2 x \cos^2 x) \] ### Step 4: Simplify \( (\sin^2 x)^2 + (\cos^2 x)^2 \) Using the identity \( (\sin^2 x + \cos^2 x)^2 = \sin^4 x + \cos^4 x + 2\sin^2 x \cos^2 x \): \[ 1 = \sin^4 x + \cos^4 x + 2\sin^2 x \cos^2 x \] Thus, \[ \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x \] ### Step 5: Substitute back Now substitute back into our expression for \( \sin^6 x + \cos^6 x \): \[ \sin^6 x + \cos^6 x = (1 - 2\sin^2 x \cos^2 x) - \sin^2 x \cos^2 x \] This simplifies to: \[ \sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x \] ### Step 6: Substitute \( \sin^2 x \cos^2 x \) Now substitute \( \sin^2 x \cos^2 x = \left(\frac{c^2 - 1}{2}\right)^2 \): \[ \sin^6 x + \cos^6 x = 1 - 3\left(\frac{c^2 - 1}{2}\right)^2 \] Calculating this gives: \[ \sin^6 x + \cos^6 x = 1 - 3\frac{(c^2 - 1)^2}{4} \] \[ = 1 - \frac{3(c^2 - 1)^2}{4} \] ### Final Expression Thus, we have: \[ \sin^6 x + \cos^6 x = \frac{4 - 3(c^2 - 1)^2}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If sinx+cosx=a , then (i) sin^(6)x+cos^(6)x=..... (ii) abs(sinx-cosx)=.....

int(sin^(6)x+cos^(6)x+3sin^(2)x cos^(2)x)dx is equal to

Maximum value of cosx (sinx +cos x) is equal to :

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. cos7^(@)cos23^(@)cos45^(@)cosec83^(@)cosec67^(@)=?

    Text Solution

    |

  2. If (tantheta+cottheta)/(tantheta-cottheta)=2,(0^(@)lethetale90^(@)), t...

    Text Solution

    |

  3. If sinx+cosx=c, then sin^(6)x+cos^(6)x is equal to

    Text Solution

    |

  4. (1-sinAcosA)/(cosA(secA-cosecA)).(sin^(2)A-cos^(2)A)/(sin^(3)A+cos^(3)...

    Text Solution

    |

  5. The minimum value of 12sin^(2)theta+23cos^(2)theta is

    Text Solution

    |

  6. Find the minimum value of (sintheta+cosectheta)^(2)+(costheta+sectheta...

    Text Solution

    |

  7. Find the minimum and maximum value of 4tan^(2)theta+9cos^(2)theta.

    Text Solution

    |

  8. Find the minimum and maximum value of 7cosalpha+24sinbeta.

    Text Solution

    |

  9. Find the minimum and maximum value of 5sin^(2)theta+10cos^(2)theta+12s...

    Text Solution

    |

  10. If A-B=(pi)/(4), then (1+tanA)(1-tanB)=?

    Text Solution

    |

  11. If A+B=135^(@), then (1+cotA)(1+cotB)=?

    Text Solution

    |

  12. If sectheta=x+(1)/(4x), then find the value of sectheta+tantheta.

    Text Solution

    |

  13. If "cosec"theta=x+(1)/(4x), then find the value of "cosec"theta+cot t...

    Text Solution

    |

  14. If tantheta+sintheta=m and tan theta-sin theta=n, then find the value ...

    Text Solution

    |

  15. If cot theta+costheta=m and cot theta-costheta=n, then find the value ...

    Text Solution

    |

  16. If tantheta+sintheta=mandtantheta-sintheta=n, then find the value of s...

    Text Solution

    |

  17. If cosectheta-sintheta=landsectheta-costheta=m, then l^(2)m^(2)(l^(2)+...

    Text Solution

    |

  18. If cosectheta-sintheta=mandsectheta-costheta=n, then (m^(2)n)^((2)/(3)...

    Text Solution

    |

  19. If cottheta+tantheta=xand sectheta-costheta=y, then

    Text Solution

    |

  20. If sintheta+sin^(2)theta+sin^(3)theta=1, then find the value of cos^(6...

    Text Solution

    |