Home
Class 14
MATHS
If sintheta+sin^(2)theta+sin^(3)theta=1,...

If `sintheta+sin^(2)theta+sin^(3)theta=1`, then find the value of `cos^(6)theta-4cos^(4)theta+8cos^(2)theta`.

A

0

B

3

C

1

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin \theta + \sin^2 \theta + \sin^3 \theta = 1 \) and find the value of \( \cos^6 \theta - 4 \cos^4 \theta + 8 \cos^2 \theta \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin \theta + \sin^2 \theta + \sin^3 \theta = 1 \] Let's denote \( x = \sin \theta \). Thus, we can rewrite the equation as: \[ x + x^2 + x^3 = 1 \] ### Step 2: Rearrange the equation Rearranging gives us: \[ x^3 + x^2 + x - 1 = 0 \] ### Step 3: Factor the polynomial To factor the polynomial, we can test for rational roots. By substituting \( x = 1 \): \[ 1^3 + 1^2 + 1 - 1 = 1 + 1 + 1 - 1 = 2 \quad (\text{not a root}) \] Now, let's try \( x = 0 \): \[ 0^3 + 0^2 + 0 - 1 = -1 \quad (\text{not a root}) \] Next, let's try \( x = -1 \): \[ (-1)^3 + (-1)^2 + (-1) - 1 = -1 + 1 - 1 - 1 = -2 \quad (\text{not a root}) \] Next, we can try \( x = \frac{1}{2} \): \[ \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 + \frac{1}{2} - 1 = \frac{1}{8} + \frac{1}{4} + \frac{1}{2} - 1 = \frac{1}{8} + \frac{2}{8} + \frac{4}{8} - \frac{8}{8} = 0 \] Thus, \( x = \frac{1}{2} \) is a root. ### Step 4: Factor out \( (x - \frac{1}{2}) \) Now we can factor \( x^3 + x^2 + x - 1 \) as: \[ (x - \frac{1}{2})(Ax^2 + Bx + C) \] Using synthetic division or polynomial long division, we find: \[ x^3 + x^2 + x - 1 = (x - \frac{1}{2})(x^2 + \frac{3}{2}x + 2) \] ### Step 5: Solve for \( x \) The quadratic \( x^2 + \frac{3}{2}x + 2 = 0 \) has no real roots (discriminant is negative). Thus, the only real solution is: \[ \sin \theta = \frac{1}{2} \] ### Step 6: Find \( \cos^2 \theta \) Using the Pythagorean identity: \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{4} = \frac{3}{4} \] ### Step 7: Substitute \( \cos^2 \theta \) into the expression Let \( y = \cos^2 \theta \). Then, \( y = \frac{3}{4} \). We need to find: \[ \cos^6 \theta - 4 \cos^4 \theta + 8 \cos^2 \theta = y^3 - 4y^2 + 8y \] Substituting \( y = \frac{3}{4} \): \[ \left(\frac{3}{4}\right)^3 - 4\left(\frac{3}{4}\right)^2 + 8\left(\frac{3}{4}\right) \] ### Step 8: Calculate each term Calculating each term: 1. \( \left(\frac{3}{4}\right)^3 = \frac{27}{64} \) 2. \( 4\left(\frac{3}{4}\right)^2 = 4 \cdot \frac{9}{16} = \frac{36}{16} = \frac{144}{64} \) 3. \( 8\left(\frac{3}{4}\right) = 6 \) Now convert \( 6 \) to a fraction with a denominator of \( 64 \): \[ 6 = \frac{384}{64} \] ### Step 9: Combine all terms Now combine: \[ \frac{27}{64} - \frac{144}{64} + \frac{384}{64} = \frac{27 - 144 + 384}{64} = \frac{267}{64} \] ### Final Answer Thus, the value of \( \cos^6 \theta - 4 \cos^4 \theta + 8 \cos^2 \theta \) is: \[ \frac{267}{64} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If sintheta+sin^(2)theta=1 , then find the value of cos^(2)theta+cos^(4)theta .

If sin theta+sin^(2)theta+sin^(3)theta=1 then value of cos^(6)theta-4cos^(4)theta+8cos^(2)theta is

If sin theta+sin^(2)theta+sin^(3)theta=1, then prove that cos^(6)theta-4cos^(4)theta+8cos^(2)theta=4

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

If sin theta+sin^(2)theta+sin^(3)theta=1, prove that cos^(6)theta-4cos^(4)theta+8cos^(2)=4

If (sin theta+cos theta)/(sin theta-cos theta)=3, then find the value of sin^(4)theta-cos^(4)theta

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

If sin^(8)theta+cos^(8)theta-1=0 then what is the value of cos^(2)theta sin^(2)theta

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If cosectheta-sintheta=mandsectheta-costheta=n, then (m^(2)n)^((2)/(3)...

    Text Solution

    |

  2. If cottheta+tantheta=xand sectheta-costheta=y, then

    Text Solution

    |

  3. If sintheta+sin^(2)theta+sin^(3)theta=1, then find the value of cos^(6...

    Text Solution

    |

  4. (sin^(8)theta-cos^(8)theta)/(cos2theta(1+cos^(2)2theta))=?

    Text Solution

    |

  5. If (secalpha+tanalpha)(secbeta+tanbeta)(secgamma+tangamma)=(secalpha-t...

    Text Solution

    |

  6. If asectheta+btantheta+c=0andpsectheta+qtantheta+r=0, then (br-qc)^(2)...

    Text Solution

    |

  7. If P=acos^(3)x+3acosx.sin^(2)xandQ=asin^(3)x+3acos^(2)x.sinx, then (P+...

    Text Solution

    |

  8. Let alpha, beta be such that pi lt alpha -beta lt 3 pi. If sin alpha...

    Text Solution

    |

  9. If 8cos2theta+8sec2theta=65and0^(@)ltthetalt(pi)/(2), then 4cos4theta ...

    Text Solution

    |

  10. Prove that cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)(5pi)/8+cos^(4)(7pi)/...

    Text Solution

    |

  11. cos""(pi)/(15).cos""(2pi)/(15).cos""(4pi)/(15).cos""(8pi)/(15) is equa...

    Text Solution

    |

  12. Find the value of:(1+cos""(pi)/(8))(1+cos""(3pi)/(8))(1+cos""(5pi)/(8)...

    Text Solution

    |

  13. If x=ycos""(2pi)/(3)=zcos""(4pi)/(3), then xy+yz+zx is equal to

    Text Solution

    |

  14. If A,Bin(0,pi//2),sinA=(4)/(5)andcos(A+B)=-(12)/(13), then sinB=?

    Text Solution

    |

  15. If a sectheta+b tantheta=1anda^(2)sec^(2)theta-b^(2)tan^(2)theta=5, th...

    Text Solution

    |

  16. Prove that sin^(4) pi/8+ sin^(4) 3pi/8 + sin^(4) 5pi/8 + sin^(4) 7pi/8...

    Text Solution

    |

  17. If alpha is acute angle and 2sin^(2)alpha+15cos^(2)alpha=7, then cotal...

    Text Solution

    |

  18. If 3xsintheta+2ycostheta=4and2xsintheta-3ycostheta=2, then relation be...

    Text Solution

    |

  19. If sintheta+costheta=aandsectheta+cosectheta=b, then the value of b(a^...

    Text Solution

    |

  20. If a sectheta+b tantheta=1anda^(2)sec^(2)theta-b^(2)tan^(2)theta=5, th...

    Text Solution

    |