Home
Class 14
MATHS
If asectheta+btantheta+c=0andpsectheta+q...

If `asectheta+btantheta+c=0andpsectheta+qtantheta+r=0`, then `(br-qc)^(2)-(pc-ar)^(2)=?`

A

a) `(bp-aq)`

B

b) `(aq-bp)^(2)`

C

c) `(aq+bp)^(2)`

D

d) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given, we start with the two equations: 1. \( a \sec \theta + b \tan \theta + c = 0 \) 2. \( p \sec \theta + q \tan \theta + r = 0 \) From these equations, we can express \( c \) and \( r \) in terms of \( \sec \theta \) and \( \tan \theta \): ### Step 1: Express \( c \) in terms of \( \sec \theta \) and \( \tan \theta \) From the first equation: \[ c = - (a \sec \theta + b \tan \theta) \] ### Step 2: Express \( r \) in terms of \( \sec \theta \) and \( \tan \theta \) From the second equation: \[ r = - (p \sec \theta + q \tan \theta) \] ### Step 3: Substitute \( c \) and \( r \) into the expression \( (br - qc)^2 - (pc - ar)^2 \) We need to evaluate: \[ (br - qc)^2 - (pc - ar)^2 \] Substituting the values of \( c \) and \( r \): \[ br = b(- (p \sec \theta + q \tan \theta)) = -bp \sec \theta - bq \tan \theta \] \[ qc = q(- (a \sec \theta + b \tan \theta)) = -qa \sec \theta - qb \tan \theta \] Now, substituting these into \( br - qc \): \[ br - qc = (-bp \sec \theta - bq \tan \theta) - (-qa \sec \theta - qb \tan \theta) \] \[ = (-bp + qa) \sec \theta + (-bq + qb) \tan \theta \] \[ = (qa - bp) \sec \theta + 0 \tan \theta \] Thus, we have: \[ (br - qc)^2 = (qa - bp)^2 \sec^2 \theta \] ### Step 4: Evaluate \( pc - ar \) Now, we calculate: \[ pc = p(- (a \sec \theta + b \tan \theta)) = -pa \sec \theta - pb \tan \theta \] \[ ar = a(- (p \sec \theta + q \tan \theta)) = -ap \sec \theta - aq \tan \theta \] Now substituting these into \( pc - ar \): \[ pc - ar = (-pa \sec \theta - pb \tan \theta) - (-ap \sec \theta - aq \tan \theta) \] \[ = (-pa + ap) \sec \theta + (-pb + aq) \tan \theta \] \[ = 0 \sec \theta + (aq - pb) \tan \theta \] Thus, we have: \[ (pc - ar)^2 = (aq - pb)^2 \tan^2 \theta \] ### Step 5: Combine the two results Now we substitute back into our expression: \[ (br - qc)^2 - (pc - ar)^2 = (qa - bp)^2 \sec^2 \theta - (aq - pb)^2 \tan^2 \theta \] ### Step 6: Factor out the common term Factoring out \( (qa - bp)^2 \) and \( (aq - pb)^2 \): \[ = (qa - bp)^2 \sec^2 \theta - (aq - pb)^2 \tan^2 \theta \] Using the identity \( \sec^2 \theta - \tan^2 \theta = 1 \): \[ = (qa - bp)^2 \cdot 1 \] ### Final Result Thus, we conclude: \[ (br - qc)^2 - (pc - ar)^2 = (qa - bp)^2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If a sec theta+b tan theta+c=0 and p sec theta+q tan theta+r=0 prove that (br-qc)^(2)-(pc-ar)^(2)=(aq-bp)^(2)

If a sec theta+b tan theta+c=0 and p sec theta+q tan theta+r=0, prove that (br-qc)^(2)-(pc-ar)^(2)=(aq-bp)^(2)

Find the equations of the tangent and the normal to the curve (x^2)/(a^2)-(y^2)/(b^2)=1 at (asectheta,\ btantheta) at the indicated points.

If R denotes the circum-radius of a Delta ABC , then (b^(2)-c^(2))/(2aR) is equal to

Find the equation of circle whose : (i) radius is 5 and centre is (3,4). (ii) radius is sqrt(5) and centre is (0.2). (iii) radius is sqrt(a^(2)+b^(2)) and centre is (a,b). (iv) radius is r and centre is (rcostheta,rsintheta) . (v) radius is sqrt(a^(2)sec^(2)theta+b^(2)tan^(2)theta) and centre is (asectheta,btantheta) .

If R denotes circumradius,then in Delta ABC,(b^(2)-c^(2))/(2aR) is equal to

If C_(0), C_(1), c_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0) + (C_(1))/(2) + C_(2)/(3) + ...+ (C_(n))/(n+1) or, sum_(r=0)^(n) (C_(r))/(r+ 1)

If Delta is the value of the determinant |(a_(1), b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| then what is the value of the following determinant? |(pa_(1), b_(1), qc_(1)),(pa_(2), b_(2), qc_(2)),(pa_(3), b_(3),qc_(3))| (p ne 0 or 1, q ne 0 or 1)

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. (sin^(8)theta-cos^(8)theta)/(cos2theta(1+cos^(2)2theta))=?

    Text Solution

    |

  2. If (secalpha+tanalpha)(secbeta+tanbeta)(secgamma+tangamma)=(secalpha-t...

    Text Solution

    |

  3. If asectheta+btantheta+c=0andpsectheta+qtantheta+r=0, then (br-qc)^(2)...

    Text Solution

    |

  4. If P=acos^(3)x+3acosx.sin^(2)xandQ=asin^(3)x+3acos^(2)x.sinx, then (P+...

    Text Solution

    |

  5. Let alpha, beta be such that pi lt alpha -beta lt 3 pi. If sin alpha...

    Text Solution

    |

  6. If 8cos2theta+8sec2theta=65and0^(@)ltthetalt(pi)/(2), then 4cos4theta ...

    Text Solution

    |

  7. Prove that cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)(5pi)/8+cos^(4)(7pi)/...

    Text Solution

    |

  8. cos""(pi)/(15).cos""(2pi)/(15).cos""(4pi)/(15).cos""(8pi)/(15) is equa...

    Text Solution

    |

  9. Find the value of:(1+cos""(pi)/(8))(1+cos""(3pi)/(8))(1+cos""(5pi)/(8)...

    Text Solution

    |

  10. If x=ycos""(2pi)/(3)=zcos""(4pi)/(3), then xy+yz+zx is equal to

    Text Solution

    |

  11. If A,Bin(0,pi//2),sinA=(4)/(5)andcos(A+B)=-(12)/(13), then sinB=?

    Text Solution

    |

  12. If a sectheta+b tantheta=1anda^(2)sec^(2)theta-b^(2)tan^(2)theta=5, th...

    Text Solution

    |

  13. Prove that sin^(4) pi/8+ sin^(4) 3pi/8 + sin^(4) 5pi/8 + sin^(4) 7pi/8...

    Text Solution

    |

  14. If alpha is acute angle and 2sin^(2)alpha+15cos^(2)alpha=7, then cotal...

    Text Solution

    |

  15. If 3xsintheta+2ycostheta=4and2xsintheta-3ycostheta=2, then relation be...

    Text Solution

    |

  16. If sintheta+costheta=aandsectheta+cosectheta=b, then the value of b(a^...

    Text Solution

    |

  17. If a sectheta+b tantheta=1anda^(2)sec^(2)theta-b^(2)tan^(2)theta=5, th...

    Text Solution

    |

  18. If (sec^(4)alpha)/(sec^(2)beta)-(tan^(4)alpha)/(tan^(2)beta)=1 where a...

    Text Solution

    |

  19. If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then (c...

    Text Solution

    |

  20. 7cosectheta+24sectheta=25cosecthetasectheta, then costheta=?

    Text Solution

    |