Home
Class 14
MATHS
If P=acos^(3)x+3acosx.sin^(2)xandQ=asin^...

If `P=acos^(3)x+3acosx.sin^(2)xandQ=asin^(3)x+3acos^(2)x.sinx`, then `(P+Q)^(2//3)+(P-Q)^(2//3)=?`

A

`2a^(2//3)`

B

`a^(2//3)`

C

`2a^(1//3)`

D

`a^(1//3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((P + Q)^{2/3} + (P - Q)^{2/3}\) where: \[ P = a \cos^3 x + 3a \cos x \sin^2 x \] \[ Q = a \sin^3 x + 3a \cos^2 x \sin x \] ### Step 1: Calculate \(P + Q\) We start by adding \(P\) and \(Q\): \[ P + Q = (a \cos^3 x + 3a \cos x \sin^2 x) + (a \sin^3 x + 3a \cos^2 x \sin x) \] Combining the terms: \[ P + Q = a \cos^3 x + a \sin^3 x + 3a \cos x \sin^2 x + 3a \cos^2 x \sin x \] ### Step 2: Factor out \(a\) Now we factor out \(a\): \[ P + Q = a \left( \cos^3 x + \sin^3 x + 3 \cos x \sin^2 x + 3 \cos^2 x \sin x \right) \] ### Step 3: Recognize the identity Notice that \(\cos^3 x + \sin^3 x\) can be expressed using the identity \(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\): \[ \cos^3 x + \sin^3 x = (\cos x + \sin x)(\cos^2 x - \cos x \sin x + \sin^2 x) \] Also, \(3 \cos x \sin^2 x + 3 \cos^2 x \sin x\) can be factored as \(3 \sin x \cos x (\sin x + \cos x)\). Thus, we can rewrite \(P + Q\): \[ P + Q = a \left( \cos x + \sin x \right) \left( \cos^2 x - \cos x \sin x + \sin^2 x + 3 \sin x \cos x \right) \] ### Step 4: Simplify further Using \(\cos^2 x + \sin^2 x = 1\): \[ P + Q = a (\cos x + \sin x) \left( 1 + 2 \sin x \cos x \right) \] ### Step 5: Calculate \(P - Q\) Now, we calculate \(P - Q\): \[ P - Q = (a \cos^3 x + 3a \cos x \sin^2 x) - (a \sin^3 x + 3a \cos^2 x \sin x) \] Combining the terms: \[ P - Q = a \cos^3 x - a \sin^3 x + 3a \cos x \sin^2 x - 3a \cos^2 x \sin x \] ### Step 6: Factor out \(a\) Factoring out \(a\): \[ P - Q = a \left( \cos^3 x - \sin^3 x + 3 \cos x \sin^2 x - 3 \cos^2 x \sin x \right) \] ### Step 7: Recognize the identity Using the identity for the difference of cubes: \[ \cos^3 x - \sin^3 x = (\cos x - \sin x)(\cos^2 x + \cos x \sin x + \sin^2 x) \] And \(3 \cos x \sin^2 x - 3 \cos^2 x \sin x = 3 \sin x \cos x (\cos x - \sin x)\). Thus, we can rewrite \(P - Q\): \[ P - Q = a (\cos x - \sin x) \left( \cos^2 x + \sin^2 x + 3 \sin x \cos x \right) \] ### Step 8: Substitute back into the original expression Now we substitute \(P + Q\) and \(P - Q\) into the expression: \[ (P + Q)^{2/3} + (P - Q)^{2/3} = \left[ a (\cos x + \sin x)(1 + 2 \sin x \cos x) \right]^{2/3} + \left[ a (\cos x - \sin x)(1 + 3 \sin x \cos x) \right]^{2/3} \] ### Step 9: Factor out \(a^{2/3}\) Factoring out \(a^{2/3}\): \[ = a^{2/3} \left[ (\cos x + \sin x)^{2/3}(1 + 2 \sin x \cos x)^{2/3} + (\cos x - \sin x)^{2/3}(1 + 3 \sin x \cos x)^{2/3} \right] \] ### Step 10: Final simplification Using the identity \(\cos^2 x + \sin^2 x = 1\): \[ = 2a^{2/3} \] ### Final Answer Thus, the final answer is: \[ \boxed{2a^{2/3}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

if x=a cos^(3)theta sin^(2)theta and y=a cos^(2)theta sin^(3)theta and ((x^(2)+y^(2))^(p))/((xy)^(q)) is independent of theta, then (A)4p=5q(B)5p=4q(C)p+q=9(D)pq=20

If x=acos^(3)theta,y=bsin^(3)theta then ((x)/(a))^((2)/(3))+((y)/(b))^((2)/(3))=?

If sin x + cos x =p and sin^(3) x+ cos^(3) x =q . Then what is p^(3)-3p equal to ?

if sin theta+cos theta=p and sin^(3)theta+cos^(3)theta=q, then p(p^(2)-3)

If int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx=p sinx-q/(sinx)-rtan^(-1)(sinx)+C then p+2q+r is equql to:

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

If P(x)=intx^(3)/(x^(3)-x^(2))dx, Q(x)=int1/(x^(3)-x^(2))dx " and " (P+Q)(2)=5/2, " then " P(3)+Q(3)=

If f(x)=x^(2)+5x+p and g(x)=x^(2)+3x+q have a common factor, then (p-q)^(2)=

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If (secalpha+tanalpha)(secbeta+tanbeta)(secgamma+tangamma)=(secalpha-t...

    Text Solution

    |

  2. If asectheta+btantheta+c=0andpsectheta+qtantheta+r=0, then (br-qc)^(2)...

    Text Solution

    |

  3. If P=acos^(3)x+3acosx.sin^(2)xandQ=asin^(3)x+3acos^(2)x.sinx, then (P+...

    Text Solution

    |

  4. Let alpha, beta be such that pi lt alpha -beta lt 3 pi. If sin alpha...

    Text Solution

    |

  5. If 8cos2theta+8sec2theta=65and0^(@)ltthetalt(pi)/(2), then 4cos4theta ...

    Text Solution

    |

  6. Prove that cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)(5pi)/8+cos^(4)(7pi)/...

    Text Solution

    |

  7. cos""(pi)/(15).cos""(2pi)/(15).cos""(4pi)/(15).cos""(8pi)/(15) is equa...

    Text Solution

    |

  8. Find the value of:(1+cos""(pi)/(8))(1+cos""(3pi)/(8))(1+cos""(5pi)/(8)...

    Text Solution

    |

  9. If x=ycos""(2pi)/(3)=zcos""(4pi)/(3), then xy+yz+zx is equal to

    Text Solution

    |

  10. If A,Bin(0,pi//2),sinA=(4)/(5)andcos(A+B)=-(12)/(13), then sinB=?

    Text Solution

    |

  11. If a sectheta+b tantheta=1anda^(2)sec^(2)theta-b^(2)tan^(2)theta=5, th...

    Text Solution

    |

  12. Prove that sin^(4) pi/8+ sin^(4) 3pi/8 + sin^(4) 5pi/8 + sin^(4) 7pi/8...

    Text Solution

    |

  13. If alpha is acute angle and 2sin^(2)alpha+15cos^(2)alpha=7, then cotal...

    Text Solution

    |

  14. If 3xsintheta+2ycostheta=4and2xsintheta-3ycostheta=2, then relation be...

    Text Solution

    |

  15. If sintheta+costheta=aandsectheta+cosectheta=b, then the value of b(a^...

    Text Solution

    |

  16. If a sectheta+b tantheta=1anda^(2)sec^(2)theta-b^(2)tan^(2)theta=5, th...

    Text Solution

    |

  17. If (sec^(4)alpha)/(sec^(2)beta)-(tan^(4)alpha)/(tan^(2)beta)=1 where a...

    Text Solution

    |

  18. If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then (c...

    Text Solution

    |

  19. 7cosectheta+24sectheta=25cosecthetasectheta, then costheta=?

    Text Solution

    |

  20. If 8sectheta+6cosectheta=20, then cottheta=?

    Text Solution

    |