Home
Class 14
MATHS
tan^(2)theta=1-e^(2), then sectheta+tan^...

`tan^(2)theta=1-e^(2)`, then `sectheta+tan^(3)theta.cosectheta=?`

A

`(e^(2)-1)^(3//2)`

B

`1-e`

C

`(2-e^(2))^(3//2)`

D

`(e^(2)-2)^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^2 \theta = 1 - e^2 \) and find the value of \( \sec \theta + \tan^3 \theta \cdot \csc \theta \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression we need to evaluate: \[ \sec \theta + \tan^3 \theta \cdot \csc \theta \] ### Step 2: Substitute identities Using the trigonometric identities, we know: - \( \sec \theta = \frac{1}{\cos \theta} \) - \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) - \( \csc \theta = \frac{1}{\sin \theta} \) Thus, we can rewrite \( \tan^3 \theta \cdot \csc \theta \) as: \[ \tan^3 \theta \cdot \csc \theta = \left(\frac{\sin \theta}{\cos \theta}\right)^3 \cdot \frac{1}{\sin \theta} = \frac{\sin^2 \theta}{\cos^3 \theta} \] ### Step 3: Combine the terms Now we can combine the terms: \[ \sec \theta + \tan^3 \theta \cdot \csc \theta = \frac{1}{\cos \theta} + \frac{\sin^2 \theta}{\cos^3 \theta} \] ### Step 4: Find a common denominator The common denominator for the two fractions is \( \cos^3 \theta \): \[ \sec \theta + \tan^3 \theta \cdot \csc \theta = \frac{\cos^2 \theta}{\cos^3 \theta} + \frac{\sin^2 \theta}{\cos^3 \theta} = \frac{\cos^2 \theta + \sin^2 \theta}{\cos^3 \theta} \] ### Step 5: Use the Pythagorean identity Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \sec \theta + \tan^3 \theta \cdot \csc \theta = \frac{1}{\cos^3 \theta} \] ### Step 6: Express in terms of secant Since \( \sec \theta = \frac{1}{\cos \theta} \), we can express \( \frac{1}{\cos^3 \theta} \) as: \[ \sec^3 \theta \] ### Step 7: Find \( \sec \theta \) From the original equation \( \tan^2 \theta = 1 - e^2 \), we can express \( \sec^2 \theta \): \[ \sec^2 \theta = 1 + \tan^2 \theta = 1 + (1 - e^2) = 2 - e^2 \] ### Step 8: Calculate \( \sec \theta \) Taking the square root gives us: \[ \sec \theta = \sqrt{2 - e^2} \] ### Step 9: Substitute back to find the final answer Now, substituting back into our expression for \( \sec^3 \theta \): \[ \sec^3 \theta = \left(\sqrt{2 - e^2}\right)^3 = (2 - e^2)^{3/2} \] ### Final Answer Thus, the final answer is: \[ \sec \theta + \tan^3 \theta \cdot \csc \theta = (2 - e^2)^{3/2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If tan ^2 theta =1-e ^(2), then sec theta + tan ^(3) theta cosec theta =

If tan^(2)theta=1-e^(2) prove that sec theta+tan^(3)theta cos ec theta=(2-e^(2))^((3)/(2))

If tan^2 theta =(1-e^2) , then sec theta+tan^3 theta "cosec" theta is equal to

If tan^(2)theta=1-m^(2) , then show that: sectheta+tan^(3)theta."cosec"theta=(2-m^(2))^(3//2)

If tan^2 theta=1-k^2 show that sectheta+tan^3thetacosectheta=(2-a^2)^(3/2)

If tan^(2)theta+cot^(2)theta=14 , then find sectheta.cosectheta=?

If tan^(2)theta+cot^(2)theta=14 , then sectheta.cosectheta=?

(cot^(2)""(theta)/(2)-tan^(2)""(theta)/(2))/(cottheta.cosectheta)=?

Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=tan 3 theta tan theta .

If 7sin^(2)theta+3cos^(2)theta=4 then the value of sectheta+cosectheta is

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. The numerical value of cos 2pi/7 + cos 4pi/7 + cos 6pi/7 is=........

    Text Solution

    |

  2. cos15^(@)cos7""(1)/(2)""^(@).cos82""(1)/(2)""^(@)=?

    Text Solution

    |

  3. tan^(2)theta=1-e^(2), then sectheta+tan^(3)theta.cosectheta=?

    Text Solution

    |

  4. 3tanthetatanphi=1, then (cos(theta-phi))/(cos(theta+phi))=?

    Text Solution

    |

  5. tan20^(@)+tan40^(@)+sqrt(3)tan20^(@).tan40^(@)=?

    Text Solution

    |

  6. sin36^(@).sin72^(@).sin108^(@).sin144^(@)=?

    Text Solution

    |

  7. (2cos40^(@)-cos20^(@))/(sin20^(@))=?

    Text Solution

    |

  8. The point (4,3) is translated to the point (3,1) and then the axes ar...

    Text Solution

    |

  9. (cosx)/(cosy)=n,(sinx)/(siny)=m, then (m^(2)-n^(2))sin^(2)y=?

    Text Solution

    |

  10. If xcostheta+ysintheta=4&xcostheta-ysintheta=0, then which one is corr...

    Text Solution

    |

  11. If tan^(2)theta+cot^(2)theta=14, then sectheta.cosectheta=?

    Text Solution

    |

  12. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha ...

    Text Solution

    |

  13. If tantheta-tanphi=xandcotphi-cottheta=y, then cot(theta-phi)=?

    Text Solution

    |

  14. If 3costheta=5sintheta, then ((5sintheta-2sec^(3)theta+2costheta)/(5si...

    Text Solution

    |

  15. sectheta+tantheta=2+sqrt(5), then sintheta will be

    Text Solution

    |

  16. If 3tantheta+4=0 where (pi)/(2)lt thetaltpi, then the value of 2cot th...

    Text Solution

    |

  17. If (1+sinx)/(cosx)+(cosx)/(1+sinx)=4, then find x.

    Text Solution

    |

  18. costheta(tantheta+2)(2tantheta+1)=?

    Text Solution

    |

  19. cos""(pi)/(7)+cos""(2pi)/(7)+cos""(3pi)/(7)+cos""(4pi)/(7)+cos""(5pi)/...

    Text Solution

    |

  20. (1-tan A)/(1+tan A)= (tan3^@ tan15^@ tan30^@ tan75^@ tan87^@)/(tan27^@...

    Text Solution

    |