Home
Class 14
MATHS
(2cos40^(@)-cos20^(@))/(sin20^(@))=?...

`(2cos40^(@)-cos20^(@))/(sin20^(@))=?`

A

0

B

`sqrt(3)`

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2\cos 40^\circ - \cos 20^\circ) / \sin 20^\circ\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{2\cos 40^\circ - \cos 20^\circ}{\sin 20^\circ} \] ### Step 2: Use the identity for \(2\cos A\) We can rewrite \(2\cos 40^\circ\) as \(\cos 40^\circ + \cos 40^\circ\): \[ \frac{\cos 40^\circ + \cos 40^\circ - \cos 20^\circ}{\sin 20^\circ} \] ### Step 3: Group the cosines Now, we can group the cosines: \[ \frac{(\cos 40^\circ - \cos 20^\circ) + \cos 40^\circ}{\sin 20^\circ} \] ### Step 4: Apply the cosine subtraction formula Using the formula for \(\cos A - \cos B\): \[ \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] where \(A = 40^\circ\) and \(B = 20^\circ\): \[ \cos 40^\circ - \cos 20^\circ = -2 \sin\left(\frac{40^\circ + 20^\circ}{2}\right) \sin\left(\frac{40^\circ - 20^\circ}{2}\right) = -2 \sin(30^\circ) \sin(10^\circ) \] Since \(\sin(30^\circ) = \frac{1}{2}\), we have: \[ \cos 40^\circ - \cos 20^\circ = -2 \cdot \frac{1}{2} \sin(10^\circ) = -\sin(10^\circ) \] ### Step 5: Substitute back into the expression Now substituting this back into our expression: \[ \frac{-\sin(10^\circ) + \cos 40^\circ}{\sin 20^\circ} \] ### Step 6: Substitute \(\cos 40^\circ\) We can also express \(\cos 40^\circ\) as \(\sin(50^\circ)\) (since \(\cos(90^\circ - x) = \sin x\)): \[ \frac{-\sin(10^\circ) + \sin(50^\circ)}{\sin 20^\circ} \] ### Step 7: Apply the sine subtraction formula Now we can apply the sine subtraction formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] where \(A = 50^\circ\) and \(B = 10^\circ\): \[ \sin(50^\circ) - \sin(10^\circ) = 2 \cos(30^\circ) \sin(20^\circ) \] Since \(\cos(30^\circ) = \frac{\sqrt{3}}{2}\), we have: \[ \sin(50^\circ) - \sin(10^\circ) = 2 \cdot \frac{\sqrt{3}}{2} \sin(20^\circ) = \sqrt{3} \sin(20^\circ) \] ### Step 8: Substitute back into the expression Substituting this back into our expression gives: \[ \frac{\sqrt{3} \sin(20^\circ)}{\sin 20^\circ} \] ### Step 9: Simplify Now we can simplify: \[ \sqrt{3} \] ### Final Answer Thus, the value of the expression \((2\cos 40^\circ - \cos 20^\circ) / \sin 20^\circ\) is: \[ \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

What is the vlaue of (cos40^(@) - cos140^(@))//(sin80^(@)+sin20^(@))

What is the value of ((cos40^(@)-cos140^(@)))/((sin80^(@)+sin20^(@))) ?

(2cos 40^0-cos 20^0)/(sin 20^0)=

sin20^(@)*cos40^(@)+cos20^(@)*sin40^(@)=(sqrt(3))/(2)

Prove that : (i) sin42^(@)cos48^(@)+sin48^(@)cos42^(@)=1 (ii) cos70^(@)cos20^(@)-sin70^(@)sin20^(@)=0

cos110^(@)+sin20=

(cos20^(@)35')/(sin69^(@)25') is

cos 20^(@) cos 40^(@) cos 80^(@)=

(cos20^(@)-sin20^(@))/(cos20^(@)+sin20^(@))=tan25^(@)

Prove that :(cos20^(@)-sin20^(@))/(cos20^(@)+sin20^(@))=tan25^(@)

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. tan20^(@)+tan40^(@)+sqrt(3)tan20^(@).tan40^(@)=?

    Text Solution

    |

  2. sin36^(@).sin72^(@).sin108^(@).sin144^(@)=?

    Text Solution

    |

  3. (2cos40^(@)-cos20^(@))/(sin20^(@))=?

    Text Solution

    |

  4. The point (4,3) is translated to the point (3,1) and then the axes ar...

    Text Solution

    |

  5. (cosx)/(cosy)=n,(sinx)/(siny)=m, then (m^(2)-n^(2))sin^(2)y=?

    Text Solution

    |

  6. If xcostheta+ysintheta=4&xcostheta-ysintheta=0, then which one is corr...

    Text Solution

    |

  7. If tan^(2)theta+cot^(2)theta=14, then sectheta.cosectheta=?

    Text Solution

    |

  8. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha ...

    Text Solution

    |

  9. If tantheta-tanphi=xandcotphi-cottheta=y, then cot(theta-phi)=?

    Text Solution

    |

  10. If 3costheta=5sintheta, then ((5sintheta-2sec^(3)theta+2costheta)/(5si...

    Text Solution

    |

  11. sectheta+tantheta=2+sqrt(5), then sintheta will be

    Text Solution

    |

  12. If 3tantheta+4=0 where (pi)/(2)lt thetaltpi, then the value of 2cot th...

    Text Solution

    |

  13. If (1+sinx)/(cosx)+(cosx)/(1+sinx)=4, then find x.

    Text Solution

    |

  14. costheta(tantheta+2)(2tantheta+1)=?

    Text Solution

    |

  15. cos""(pi)/(7)+cos""(2pi)/(7)+cos""(3pi)/(7)+cos""(4pi)/(7)+cos""(5pi)/...

    Text Solution

    |

  16. (1-tan A)/(1+tan A)= (tan3^@ tan15^@ tan30^@ tan75^@ tan87^@)/(tan27^@...

    Text Solution

    |

  17. If (1+sinx)/(cosx)+(cosx)/(1+sinx)=4, then find x.

    Text Solution

    |

  18. If cosectheta-sintheta=mandsectheta-costheta=n, then (m^(2)n)^((2)/(3)...

    Text Solution

    |

  19. If sinA+sinB=C,&cosA+cosB=D, then sin(A+B)=?

    Text Solution

    |

  20. If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5)), where A and B are positiv...

    Text Solution

    |