Home
Class 14
MATHS
tan((pi)/(4)+theta)-tan((pi)/(4)-theta)=...

`tan((pi)/(4)+theta)-tan((pi)/(4)-theta)=?`

A

`2tan2theta`

B

`2cot2theta`

C

`tan2theta`

D

`cot2theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan\left(\frac{\pi}{4} + \theta\right) - \tan\left(\frac{\pi}{4} - \theta\right) \), we can use the tangent addition and subtraction formulas. ### Step-by-Step Solution: 1. **Identify the formulas**: We will use the tangent addition and subtraction formulas: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] Here, let \( A = \frac{\pi}{4} \) and \( B = \theta \). 2. **Calculate \( \tan\left(\frac{\pi}{4} + \theta\right) \)**: Using the addition formula: \[ \tan\left(\frac{\pi}{4} + \theta\right) = \frac{\tan\left(\frac{\pi}{4}\right) + \tan(\theta)}{1 - \tan\left(\frac{\pi}{4}\right) \tan(\theta)} \] Since \( \tan\left(\frac{\pi}{4}\right) = 1 \): \[ \tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan(\theta)}{1 - 1 \cdot \tan(\theta)} = \frac{1 + \tan(\theta)}{1 - \tan(\theta)} \] 3. **Calculate \( \tan\left(\frac{\pi}{4} - \theta\right) \)**: Using the subtraction formula: \[ \tan\left(\frac{\pi}{4} - \theta\right) = \frac{\tan\left(\frac{\pi}{4}\right) - \tan(\theta)}{1 + \tan\left(\frac{\pi}{4}\right) \tan(\theta)} \] Again, since \( \tan\left(\frac{\pi}{4}\right) = 1 \): \[ \tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan(\theta)}{1 + 1 \cdot \tan(\theta)} = \frac{1 - \tan(\theta)}{1 + \tan(\theta)} \] 4. **Subtract the two results**: Now we need to compute: \[ \tan\left(\frac{\pi}{4} + \theta\right) - \tan\left(\frac{\pi}{4} - \theta\right) \] Substituting the values we found: \[ = \left(\frac{1 + \tan(\theta)}{1 - \tan(\theta)}\right) - \left(\frac{1 - \tan(\theta)}{1 + \tan(\theta)}\right) \] 5. **Find a common denominator**: The common denominator is \( (1 - \tan(\theta))(1 + \tan(\theta)) \): \[ = \frac{(1 + \tan(\theta))^2 - (1 - \tan(\theta))^2}{(1 - \tan(\theta))(1 + \tan(\theta))} \] 6. **Simplify the numerator**: Using the difference of squares: \[ = \frac{(1 + \tan(\theta) + 1 - \tan(\theta))(1 + \tan(\theta) - (1 - \tan(\theta)))}{(1 - \tan(\theta))(1 + \tan(\theta))} \] This simplifies to: \[ = \frac{(2)(2\tan(\theta))}{(1 - \tan^2(\theta))} \] Thus: \[ = \frac{4\tan(\theta)}{1 - \tan^2(\theta)} \] 7. **Final Result**: We can express this in terms of \( \tan(2\theta) \): \[ = 2 \cdot \frac{2\tan(\theta)}{1 - \tan^2(\theta)} = 2\tan(2\theta) \] ### Final Answer: \[ \tan\left(\frac{\pi}{4} + \theta\right) - \tan\left(\frac{\pi}{4} - \theta\right) = 2\tan(2\theta) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

tan((pi)/(4)+theta)xx tan((3 pi)/(4)+theta)=-1

tan theta tan((pi)/(3)+theta)tan((pi)/(3)-theta)=tan3 theta

tan ((pi)/(4)+theta) tan ((3pi)/( 4) + theta) is equal to

If (sin(theta+alpha))/(cos(theta-alpha))=(1-m)/(1+m), prove that tan((pi)/(4)-theta)tan((pi)/(4)-alpha)=m

If tan theta + tan((pi)/(3)+theta) + tan((-pi)/(3)+theta) = ktan 3 theta then the value of k is

(1-tan^(2)((pi)/(4)-theta))/(1+tan^(2)((pi)/(4)-theta))=sin2 theta

If tan theta=(3)/(4) and theta is not in first quadrant sin(sin((pi)/(2)+theta)-cot(pi-theta))/(tan((3 pi)/(2)-theta)-cos((3 pi)/(2)+theta))=

tan ((pi)/(4) + (theta)/(2)) + tan ((pi)/(4) -(theta)/(2)) is equal to

If theta in((pi)/(4),(pi)/(2)) and f(theta)=sec 2theta- tan 2theta , then f((pi)/(4)-theta)=

The most general values oro satisfying tan theta+tan((3 pi)/(4)+theta)=2 are

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. sin((pi)/(10))sin((3pi)/(10))=?

    Text Solution

    |

  2. If tanA-tanB=x and cotB-cotA=y, then cot(A-B)=?

    Text Solution

    |

  3. tan((pi)/(4)+theta)-tan((pi)/(4)-theta)=?

    Text Solution

    |

  4. cot((pi)/(4)+theta)cot((pi)/(4)-theta)=?

    Text Solution

    |

  5. cos24^(@)+cos55^(@)+cos125^(@)+cos204^(@)+cos300^(@)=?

    Text Solution

    |

  6. (2sinthetatantheta(1-tantheta)+2sinthetasec^(2)theta)/((1+tantheta)^(2...

    Text Solution

    |

  7. If mtan(theta-30^(@))=ntan(theta+120^(@)), then (m+n)/(m-n)=?

    Text Solution

    |

  8. cosA+cos(240^(@)+A)+cos(240^(@)-A)=?

    Text Solution

    |

  9. 1+cos56^(@)+cos58^(@)-cos66^(@)=?

    Text Solution

    |

  10. If A+B=225^(@), then (tanA)/(1-tanA).(tanB)/(1-tanB)=?

    Text Solution

    |

  11. If tantheta=(xsinphi)/(1-xcosphi)&tanphi=(ysintheta)/(1-ycostheta), th...

    Text Solution

    |

  12. If tanx=(b)/(a), then find the value of sqrt((a+b)/( a-b ))+sqrt((a-b)...

    Text Solution

    |

  13. If cos(A+B)=alphacosAcosB+betasinAsinB, then (alpha,beta)=?

    Text Solution

    |

  14. tanalpha+2tan2alpha+4tan4alpha+8cot8alpha=?

    Text Solution

    |

  15. The greatest value of cos^(2)((pi)/(3)-x)-cos^(2)((pi)/(3)+x) is

    Text Solution

    |

  16. (sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))=? (x is in IV ...

    Text Solution

    |

  17. If sin A = n sin B then (n-1)/(n+1) tan (A+B)/(2) is equal to

    Text Solution

    |

  18. (sin^(2)A-sin^(2)B)/(sinAcosA-sinBcosB)=?

    Text Solution

    |

  19. If cosA=mcosB, then

    Text Solution

    |

  20. If xcostheta=ycos(theta+(2pi)/(3))=zcos(theta+(4pi)/(3)), then (1)/(x)...

    Text Solution

    |