Home
Class 14
MATHS
If cosA=mcosB, then...

If `cosA=mcosB`, then

A

`cot""(A+B)/(2)=(m+1)/(m-1)tan""(B-A)/(2)`

B

`tan""(A+B)/(2)=(m+1)/(m-1)cot""(B-A)/(2)`

C

`cot""(A+B)/(2)=(m+1)/(m-1)tan""(A-B)/(2)`

D

`cot""(A+B)/(2)=(m-1)/(m+1)tan""(A-B)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given \( \cos A = m \cos B \), we will derive the relationships step by step. ### Step 1: Rearranging the equation We start with the equation: \[ \cos A = m \cos B \] Dividing both sides by \( \cos B \) (assuming \( \cos B \neq 0 \)): \[ \frac{\cos A}{\cos B} = m \] **Hint:** Remember that dividing by a trigonometric function is valid only if that function is not zero. ### Step 2: Applying the Cosine Addition Formula Using the cosine addition formula: \[ \cos A = \cos(B + (A - B)) = \cos B \cos(A - B) - \sin B \sin(A - B) \] We can express \( \cos A \) in terms of \( \cos B \) and \( \sin B \). **Hint:** Familiarize yourself with the cosine addition and subtraction formulas to manipulate cosine expressions. ### Step 3: Using the Compound Angle Formula Now, we can apply the compound angle formula for cosine: \[ \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] and \[ \cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \] This gives us two equations to work with. **Hint:** The compound angle formulas help simplify expressions involving sums and differences of angles. ### Step 4: Setting up the equation From the rearranged equation, we can express it as: \[ \frac{\cos A + \cos B}{\cos A - \cos B} = \frac{m + 1}{m - 1} \] **Hint:** This step involves recognizing how to structure the equation to isolate the terms involving \( m \). ### Step 5: Substituting the formulas Substituting the cosine formulas into our equation: \[ \frac{2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)}{-2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right)} = \frac{m + 1}{m - 1} \] This simplifies to: \[ \frac{\cos\left(\frac{A + B}{2}\right)}{\sin\left(\frac{A + B}{2}\right)} = \frac{m + 1}{m - 1} \] **Hint:** Recognize that the left side can be expressed as cotangent. ### Step 6: Final expression Thus, we have: \[ \cot\left(\frac{A + B}{2}\right) = \frac{m + 1}{m - 1} \tan\left(\frac{B - A}{2}\right) \] **Hint:** This is the final form of the relationship derived from the original equation. ### Conclusion The derived relationship shows how \( \cot\left(\frac{A + B}{2}\right) \) relates to \( m \) and the tangent of the difference of angles. This can be used to analyze various properties of angles \( A \) and \( B \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If a cosA=b cosB, then triangleABC is

In triangleABC , if cosA=sinB-cosC , then the triangle is

If x = cosecA + cosA and y = cosecA - cosA, then find the value of (2/(x+y))^2 +((x-y)/2)^2 -1 . यदि x = cosecA + cosA और y =cosecA - cosA, तो (2/(x+y))^2 +((x-y)/2)^2 -1 का मान ज्ञात करें:

If (sinA-sinC)/(cosC-cosA)=cotB , then A, B, C are in

If in a triangle ABC, 2cosA=sinBcosecC , then

If cotA=(4)/(5) , then ((sinA+cosA))/((sinA-cosA))=?

if sinA-sqrt(6)cosA=sqrt(7)cosA , then cosA+sqrt(6)sinA is equal to

If 3sinA +4cosA=4, " then find " 4sinA -3cosA .

If |[cos(A+B), -sin(A+B), cos2B], [sinA, cosA, sinB], [-cosA, sinA, cosB]|=0 , then B=

If x = 4cosA + 5sinA and y = 4 sinA - 5 cosA, then the value of x^2+y^2 is : यदि x = 4cosA + 5sinA तथा y = 4 sinA - 5 cosA है, तो x^2+y^2 का मान क्या होगा ?

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If sin A = n sin B then (n-1)/(n+1) tan (A+B)/(2) is equal to

    Text Solution

    |

  2. (sin^(2)A-sin^(2)B)/(sinAcosA-sinBcosB)=?

    Text Solution

    |

  3. If cosA=mcosB, then

    Text Solution

    |

  4. If xcostheta=ycos(theta+(2pi)/(3))=zcos(theta+(4pi)/(3)), then (1)/(x)...

    Text Solution

    |

  5. 2sinAcos^(3)A-2sin^(3)AcosA=?

    Text Solution

    |

  6. <b>(i) tanA+tan(180^(@)+A)+cot(90^(@)+A)+cot(360^(@)-A)=?</b> (a) 0 ...

    Text Solution

    |

  7. (sin3theta+sin5theta+sin7theta+sin9theta)/(cos3theta+cos5theta+cos7the...

    Text Solution

    |

  8. If ABCD is a cyclic quadrilateral then cos A + cos B + cos C + cos D ...

    Text Solution

    |

  9. If (2sinalpha)/(1+cosalpha +sinalpha)=y , then prove that (1-cosalph...

    Text Solution

    |

  10. 1-(sin^(2)y)/(1+cosy)+(1+cosy)/(siny)-(siny)/(1-cosy)=?

    Text Solution

    |

  11. (sin70^(@)+cos40^(@))/(cos70^(@)+sin40^(@))=?

    Text Solution

    |

  12. If x=secphi-tanphi&y=cosecphi+cotphi, then

    Text Solution

    |

  13. If (sin^(4)alpha)/a +(cos^(4)alpha)/b = 1/(a+b), show that sin^(8)alph...

    Text Solution

    |

  14. If 2ycostheta=x sintheta and 2xsectheta-ycosectheta=3, then x^(2)+4y^(...

    Text Solution

    |

  15. If tantheta-cottheta=a and costheta+sintheta=b, then (b^(2)-1)^(2)(a^(...

    Text Solution

    |

  16. If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha), then sinalpha+cos...

    Text Solution

    |

  17. If sintheta+sinphi=aandcostheta+cosphi=b, then tan((theta-phi)/(2))=?

    Text Solution

    |

  18. cos^(2)alpha+cos^(2)(alpha+120^(@))+cos^(2)(alpha-120^(@))=?

    Text Solution

    |

  19. The value of sin""(pi)/(14).sin""(3pi)/(14).sin""(5pi)/(14).sin""(7pi)...

    Text Solution

    |

  20. If tanA=(1)/(3)andtanB=(2)/(5) , what is the value of tan (2A+B) ?

    Text Solution

    |