Home
Class 14
MATHS
If tantheta=(sinalpha-cosalpha)/(sinalph...

If `tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha)`, then `sinalpha+cosalphaandsinalpha-cosalpha` are equal to

A

`sqrt(2)costheta,sqrt(2)sintheta`

B

`sqrt(2)sintheta,sqrt(2)costheta`

C

`sqrt(2)sintheta,sqrt(2)sintheta`

D

`sqrt(2)costheta,sqrt(2)costheta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \tan \theta = \frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha} \] We need to find the values of \(\sin \alpha + \cos \alpha\) and \(\sin \alpha - \cos \alpha\). ### Step 1: Rewrite the equation in terms of tangent From the equation, we can express it as: \[ \tan \theta = \frac{A - B}{A + B} \] where \(A = \sin \alpha\) and \(B = \cos \alpha\). ### Step 2: Use the tangent subtraction formula We know that: \[ \tan(\alpha - \frac{\pi}{4}) = \frac{\tan \alpha - \tan \frac{\pi}{4}}{1 + \tan \alpha \tan \frac{\pi}{4}} = \frac{\tan \alpha - 1}{1 + \tan \alpha} \] Thus, we can equate: \[ \tan \theta = \tan(\alpha - \frac{\pi}{4}) \] This implies: \[ \theta = \alpha - \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] ### Step 3: Solve for \(\alpha\) From the above equation, we can express \(\alpha\) as: \[ \alpha = \theta + \frac{\pi}{4} \] ### Step 4: Substitute \(\alpha\) into \(\sin \alpha + \cos \alpha\) Now we can substitute \(\alpha\) back into the expressions we need to find: \[ \sin \alpha + \cos \alpha = \sin\left(\theta + \frac{\pi}{4}\right) + \cos\left(\theta + \frac{\pi}{4}\right) \] Using the sine and cosine addition formulas: \[ \sin\left(\theta + \frac{\pi}{4}\right) = \sin \theta \cos \frac{\pi}{4} + \cos \theta \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \cos \theta \] \[ \cos\left(\theta + \frac{\pi}{4}\right) = \cos \theta \cos \frac{\pi}{4} - \sin \theta \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \sin \theta \] ### Step 5: Combine the results Now we combine these results: \[ \sin \alpha + \cos \alpha = \left(\frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \cos \theta\right) + \left(\frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \sin \theta\right) \] This simplifies to: \[ \sin \alpha + \cos \alpha = \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \sin \theta = \frac{2}{\sqrt{2}} \cos \theta = \sqrt{2} \cos \theta \] ### Step 6: Find \(\sin \alpha - \cos \alpha\) Now we find \(\sin \alpha - \cos \alpha\): \[ \sin \alpha - \cos \alpha = \sin\left(\theta + \frac{\pi}{4}\right) - \cos\left(\theta + \frac{\pi}{4}\right) \] Using the same sine and cosine addition formulas: \[ \sin \alpha - \cos \alpha = \left(\frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \cos \theta\right) - \left(\frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \sin \theta\right) \] This simplifies to: \[ \sin \alpha - \cos \alpha = \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \sin \theta = \frac{2}{\sqrt{2}} \sin \theta = \sqrt{2} \sin \theta \] ### Final Result Thus, we have: \[ \sin \alpha + \cos \alpha = \sqrt{2} \cos \theta \] \[ \sin \alpha - \cos \alpha = \sqrt{2} \sin \theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha) then show that sinalpha+cosalpha=sqrt(2)costheta .

(sinalpha + cosalpha)(tanalpha + cotalpha) = secalpha + cosecalpha

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

If tantheta = (sinalpha-cosalpha)/(sinalpha+cosalpha), then (A) sin alpha-cos alpha=+-sqrt(2) sin theta (B) sinalpha+cosalpha=+-sqrt(2) cos theta (C) cos2theta=sin2alpha (D) sin2theta+cos2alpha=0

costheta-sintheta=cosalpha-sinalpha

Prove that (sinalpha+cosalpha)(tanalpha+cotalpha)=secalpha+"cosec"alpha

If A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?

If sin.alpha/2+cos.alpha/2=1.4, then: sinalpha=

If (2sinalpha)/(1+cosalpha +sinalpha)=y , then prove that (1-cosalpha+sinalpha )/(1+sinalpha) is also equal to y.

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If 2ycostheta=x sintheta and 2xsectheta-ycosectheta=3, then x^(2)+4y^(...

    Text Solution

    |

  2. If tantheta-cottheta=a and costheta+sintheta=b, then (b^(2)-1)^(2)(a^(...

    Text Solution

    |

  3. If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha), then sinalpha+cos...

    Text Solution

    |

  4. If sintheta+sinphi=aandcostheta+cosphi=b, then tan((theta-phi)/(2))=?

    Text Solution

    |

  5. cos^(2)alpha+cos^(2)(alpha+120^(@))+cos^(2)(alpha-120^(@))=?

    Text Solution

    |

  6. The value of sin""(pi)/(14).sin""(3pi)/(14).sin""(5pi)/(14).sin""(7pi)...

    Text Solution

    |

  7. If tanA=(1)/(3)andtanB=(2)/(5) , what is the value of tan (2A+B) ?

    Text Solution

    |

  8. The value of sin600^(@)cos330^(@)+cos120^(@)sin150^(@) is

    Text Solution

    |

  9. If tan(A+B)=p&tan(A-B)=q, then the value of tan 2A is

    Text Solution

    |

  10. (sec8A-1)/(sec4A-1)=?

    Text Solution

    |

  11. In a DeltaABC,angleC=90^(@), then the equation whose roots are tan A &...

    Text Solution

    |

  12. If sinA+sin2A=xandcosA+cos2A=y, then (x^(2)+y^(2))(x^(2)+y^(2)-3)=?

    Text Solution

    |

  13. If cos2B=(cos(A+C))/(cos(A-C)), then tan A, tan B, tan C are in

    Text Solution

    |

  14. (cos9^(@)+sin9^(@))/(cos9^(@)-sin9^(@))=?

    Text Solution

    |

  15. If tanalpha=(1)/(7)&tanbeta=(1)/(3), then cos2alpha=?

    Text Solution

    |

  16. If A=130^(@) and x=sinA+cosA, then

    Text Solution

    |

  17. If tanA=(1)/(2),tanB=(1)/(3), then cos2A=?

    Text Solution

    |

  18. If sin(120^(@)-A)=sin(120^(@)-B),0ltA,Bltpi, then the values A and B ...

    Text Solution

    |

  19. Show that 2"sin"^(2)beta+4 cos(alpha+beta)"sin" alpha sin beta+cos2...

    Text Solution

    |

  20. The value of cos12^(@)+cos84^(@)+cos156^(@)+cos132^(@) is

    Text Solution

    |