Home
Class 14
MATHS
If sintheta+sinphi=aandcostheta+cosphi=b...

If `sintheta+sinphi=aandcostheta+cosphi=b`, then `tan((theta-phi)/(2))=?`

A

`sqrt((a^(2)+b^(2))/(4-a^(2)-b^(2)))`

B

`sqrt((4-a^(2)-b^(2))/(a^(2)+b^(2)))`

C

`sqrt((a^(2)+b^(2))/(4+a^(2)+b^(2)))`

D

`sqrt((4+a^(2)+b^(2))/(a^(2)+b^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin \theta + \sin \phi = a \) and \( \cos \theta + \cos \phi = b \), we need to find \( \tan\left(\frac{\theta - \phi}{2}\right) \). ### Step-by-Step Solution: 1. **Set Up the Equations**: We have two equations: \[ \sin \theta + \sin \phi = a \quad \text{(1)} \] \[ \cos \theta + \cos \phi = b \quad \text{(2)} \] 2. **Square Both Equations**: Square both equations to eliminate the sine and cosine terms: \[ (\sin \theta + \sin \phi)^2 = a^2 \implies \sin^2 \theta + \sin^2 \phi + 2 \sin \theta \sin \phi = a^2 \quad \text{(3)} \] \[ (\cos \theta + \cos \phi)^2 = b^2 \implies \cos^2 \theta + \cos^2 \phi + 2 \cos \theta \cos \phi = b^2 \quad \text{(4)} \] 3. **Add the Two Squared Equations**: Add equations (3) and (4): \[ (\sin^2 \theta + \cos^2 \theta) + (\sin^2 \phi + \cos^2 \phi) + 2(\sin \theta \sin \phi + \cos \theta \cos \phi) = a^2 + b^2 \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ 1 + 1 + 2(\sin \theta \sin \phi + \cos \theta \cos \phi) = a^2 + b^2 \] Simplifying gives: \[ 2 + 2(\sin \theta \sin \phi + \cos \theta \cos \phi) = a^2 + b^2 \] 4. **Use the Cosine Addition Formula**: The expression \( \sin \theta \sin \phi + \cos \theta \cos \phi \) can be rewritten using the cosine of the difference: \[ \sin \theta \sin \phi + \cos \theta \cos \phi = \cos(\theta - \phi) \] Therefore, we have: \[ 2 + 2\cos(\theta - \phi) = a^2 + b^2 \] Rearranging gives: \[ \cos(\theta - \phi) = \frac{a^2 + b^2 - 2}{2} \] 5. **Find \( \tan\left(\frac{\theta - \phi}{2}\right) \)**: We can use the half-angle formula: \[ \tan\left(\frac{\theta - \phi}{2}\right) = \sqrt{\frac{1 - \cos(\theta - \phi)}{1 + \cos(\theta - \phi)}} \] Substituting for \( \cos(\theta - \phi) \): \[ \tan\left(\frac{\theta - \phi}{2}\right) = \sqrt{\frac{1 - \frac{a^2 + b^2 - 2}{2}}{1 + \frac{a^2 + b^2 - 2}{2}} = \sqrt{\frac{2 - (a^2 + b^2 - 2)}{2 + (a^2 + b^2 - 2)}} \] Simplifying further: \[ = \sqrt{\frac{4 - a^2 - b^2}{a^2 + b^2}} \] ### Final Answer: Thus, we have: \[ \tan\left(\frac{\theta - \phi}{2}\right) = \sqrt{\frac{4 - a^2 - b^2}{a^2 + b^2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If sintheta+sinphi=aandcostheta+cosphi=b find cos((theta-phi)/(2)) in terms of a and b.

If tan theta+tan phi=a and cot theta+cot phi=b then cot(theta+phi)=

If sin theta+sin phi=a and cos theta+cos phi=b find the value of tan((theta-phi)/(2))

sin theta + sin phi = a, cos theta + cos phi = b then prove tan [(theta-phi) / (2)] = + - sqrt ((4-a ^ (2) -b ^ (2)) / (a ^ (2) + b ^ (2)))

Eliminate theta, phi from sin theta + sin phi = a , cos theta+ cos phi = b and tan theta/2 * tan phi/2 = c.

If tan theta=1/2 and tan phi=1/3, then tan(2 theta+phi)

The value of ((sintheta+sinphi)/(costheta+cosphi)+(costheta-cosphi)/(sintheta-sinphi)) is :

If sintheta=acosphiandcostheta=b sinphi then the value of (a^(2)-1)cot^(2)phi+(1-b^(2))cot^(2)theta is equal to :

If cos theta=(a cos phi+b)/(a+b cos phi) then tan^(2)((theta)/(2)) is equal to

If cos theta = (a cos phi + b) / (a + b cos phi) then (tan ((theta) / (2))) / (tan ((phi) / (2))) = (A) ( ab) / (a + b) (B) (a + b) / (ab) (C) sqrt ((a + b) / (ab)) (D) sqrt ((ab) / (a + b))

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. If tantheta-cottheta=a and costheta+sintheta=b, then (b^(2)-1)^(2)(a^(...

    Text Solution

    |

  2. If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha), then sinalpha+cos...

    Text Solution

    |

  3. If sintheta+sinphi=aandcostheta+cosphi=b, then tan((theta-phi)/(2))=?

    Text Solution

    |

  4. cos^(2)alpha+cos^(2)(alpha+120^(@))+cos^(2)(alpha-120^(@))=?

    Text Solution

    |

  5. The value of sin""(pi)/(14).sin""(3pi)/(14).sin""(5pi)/(14).sin""(7pi)...

    Text Solution

    |

  6. If tanA=(1)/(3)andtanB=(2)/(5) , what is the value of tan (2A+B) ?

    Text Solution

    |

  7. The value of sin600^(@)cos330^(@)+cos120^(@)sin150^(@) is

    Text Solution

    |

  8. If tan(A+B)=p&tan(A-B)=q, then the value of tan 2A is

    Text Solution

    |

  9. (sec8A-1)/(sec4A-1)=?

    Text Solution

    |

  10. In a DeltaABC,angleC=90^(@), then the equation whose roots are tan A &...

    Text Solution

    |

  11. If sinA+sin2A=xandcosA+cos2A=y, then (x^(2)+y^(2))(x^(2)+y^(2)-3)=?

    Text Solution

    |

  12. If cos2B=(cos(A+C))/(cos(A-C)), then tan A, tan B, tan C are in

    Text Solution

    |

  13. (cos9^(@)+sin9^(@))/(cos9^(@)-sin9^(@))=?

    Text Solution

    |

  14. If tanalpha=(1)/(7)&tanbeta=(1)/(3), then cos2alpha=?

    Text Solution

    |

  15. If A=130^(@) and x=sinA+cosA, then

    Text Solution

    |

  16. If tanA=(1)/(2),tanB=(1)/(3), then cos2A=?

    Text Solution

    |

  17. If sin(120^(@)-A)=sin(120^(@)-B),0ltA,Bltpi, then the values A and B ...

    Text Solution

    |

  18. Show that 2"sin"^(2)beta+4 cos(alpha+beta)"sin" alpha sin beta+cos2...

    Text Solution

    |

  19. The value of cos12^(@)+cos84^(@)+cos156^(@)+cos132^(@) is

    Text Solution

    |

  20. If A+C=B, then tan A tan B tan C = ?

    Text Solution

    |