Home
Class 14
MATHS
The value of sin600^(@)cos330^(@)+cos120...

The value of `sin600^(@)cos330^(@)+cos120^(@)sin150^(@)` is

A

1

B

`-1`

C

`(1)/(sqrt(2))`

D

`(sqrt(3))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin 60^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ \), we will evaluate each trigonometric function step by step. ### Step 1: Evaluate \( \sin 60^\circ \) The sine of \( 60^\circ \) is a well-known value: \[ \sin 60^\circ = \frac{\sqrt{3}}{2} \] **Hint:** Remember the values of sine for common angles: \( 0^\circ, 30^\circ, 45^\circ, 60^\circ, 90^\circ \). ### Step 2: Evaluate \( \cos 330^\circ \) To find \( \cos 330^\circ \), we can use the fact that \( 330^\circ \) is in the fourth quadrant: \[ \cos 330^\circ = \cos(360^\circ - 30^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2} \] **Hint:** In the fourth quadrant, cosine values are positive. ### Step 3: Evaluate \( \cos 120^\circ \) The angle \( 120^\circ \) is in the second quadrant: \[ \cos 120^\circ = \cos(180^\circ - 60^\circ) = -\cos 60^\circ = -\frac{1}{2} \] **Hint:** In the second quadrant, cosine values are negative. ### Step 4: Evaluate \( \sin 150^\circ \) The angle \( 150^\circ \) is also in the second quadrant: \[ \sin 150^\circ = \sin(180^\circ - 30^\circ) = \sin 30^\circ = \frac{1}{2} \] **Hint:** In the second quadrant, sine values are positive. ### Step 5: Substitute the values into the expression Now we can substitute the values we found back into the original expression: \[ \sin 60^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ = \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(-\frac{1}{2}\right)\left(\frac{1}{2}\right) \] ### Step 6: Simplify the expression Calculating each term: \[ = \frac{3}{4} - \frac{1}{4} = \frac{3 - 1}{4} = \frac{2}{4} = \frac{1}{2} \] ### Final Answer Thus, the value of \( \sin 60^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ \) is: \[ \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

The value of sin 600^(@) cos 330^(@)+ cos 120^(@) sin 150^(@) is

sin120^(@)cos150^(@)-cos240^(@)sin330^(@)

sin120^(@)cos150^(@)-cos240^(@)sin330^(@)=

The value of sin^(3)330^(@)+cos^(2)240^(@)

find the value of sin60^(@)cos30^(@)+sin30^(@)cos60^(@)

if sin2A=2sin A cos A and sin20^(@)=K then the value of cos20^(@)cos40^(@)cos80^(@)cos160^(@)-

" The value of ((sin17^(@))(cos13^(@))+(cos17^(@))(sin13^(@)))/((cos23^(@))(cos37^(@))-(sin157^(@))(sin37^(@))) is equal to

Find the value of (sin 135^(@) - cos 120^(@))/(sin 135^(@) + cos 120^(@))

Prove that: sin600^(@)cos390^(@)+cos480^(@)s in150^(@)=-1