Home
Class 14
MATHS
(sec8A-1)/(sec4A-1)=?...

`(sec8A-1)/(sec4A-1)=?`

A

`(tan2A)/(tan8A)`

B

`(tan8A)/(tan2A)`

C

`(cot8A)/(cot2A)`

D

`(cot2A)/(cot8A)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sec 8A - 1)/(\sec 4A - 1)\), we will follow these steps: ### Step 1: Rewrite secant in terms of cosine Recall that \(\sec A = \frac{1}{\cos A}\). Therefore, we can rewrite the expression as: \[ \sec 8A - 1 = \frac{1}{\cos 8A} - 1 = \frac{1 - \cos 8A}{\cos 8A} \] Similarly, for \(\sec 4A - 1\): \[ \sec 4A - 1 = \frac{1}{\cos 4A} - 1 = \frac{1 - \cos 4A}{\cos 4A} \] ### Step 2: Substitute these into the original expression Now we substitute these into the original expression: \[ \frac{\sec 8A - 1}{\sec 4A - 1} = \frac{\frac{1 - \cos 8A}{\cos 8A}}{\frac{1 - \cos 4A}{\cos 4A}} = \frac{(1 - \cos 8A) \cdot \cos 4A}{(1 - \cos 4A) \cdot \cos 8A} \] ### Step 3: Simplify the expression Now we can simplify this expression further. We can use the identity \(1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right)\): \[ 1 - \cos 8A = 2 \sin^2(4A) \quad \text{and} \quad 1 - \cos 4A = 2 \sin^2(2A) \] Substituting these into our expression gives: \[ \frac{2 \sin^2(4A) \cdot \cos 4A}{2 \sin^2(2A) \cdot \cos 8A} \] The 2's cancel out: \[ \frac{\sin^2(4A) \cdot \cos 4A}{\sin^2(2A) \cdot \cos 8A} \] ### Step 4: Further simplification Using the identity \(\sin(2x) = 2 \sin(x) \cos(x)\), we can express \(\sin^2(4A)\) as: \[ \sin^2(4A) = \sin^2(2 \cdot 2A) = 4 \sin^2(2A) \cos^2(2A) \] Substituting this back into the expression gives: \[ \frac{4 \sin^2(2A) \cos^2(2A) \cdot \cos 4A}{\sin^2(2A) \cdot \cos 8A} \] Now, we can cancel \(\sin^2(2A)\): \[ \frac{4 \cos^2(2A) \cdot \cos 4A}{\cos 8A} \] ### Final Expression Thus, the final expression simplifies to: \[ \frac{4 \cos^2(2A) \cdot \cos 4A}{\cos 8A} \] ### Summary The final result is: \[ \frac{4 \cos^2(2A) \cdot \cos 4A}{\cos 8A} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

(sec 8 A-1)/( sec 4A-1)=

Prove that (i) (sec 8A -1)/(sec 4A -1) =(tan 8A)/(tan 2A) (ii) (cos A+ sin A)/(cos A - sin A)-(cos A-sin A)/(cos A+sin A)=2 tan 2A

Prove that (sec8x-1)/(sec4x-1)=(tan8x)/(tan2x)

Prove that: (sec4A-1)/(sec8A-1)=tan2A. cot8A

sqrt((sec A-1)/(sec A+1))+sqrt((scA+1)/(sec A-1))=2csc A

Prove: (sec A-1)/(sec A+1)=(1-cos A)/(1+cos A)

((sin2A)/(sec A-1))((sec2A)/(sec2A+1))=

prove :(sec8 theta-1)/(sec4 theta-1)=(tan8 theta)/(tan2 theta)

Prove that (sec 8theta-1)/(sec 4 theta -1) = (tan 8theta)/(tan 2theta)

(sec8 alpha-1)/(sec4 alpha-1)=(tan8 alpha)/(tan2 alpha)