Home
Class 14
MATHS
If tanalpha=(1)/(7)&tanbeta=(1)/(3), the...

If `tanalpha=(1)/(7)&tanbeta=(1)/(3)`, then `cos2alpha=?`

A

`sin2beta`

B

`sin4beta`

C

`sin3beta`

D

`cos3beta`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \cos 2\alpha \) given that \( \tan \alpha = \frac{1}{7} \) and \( \tan \beta = \frac{1}{3} \), we can follow these steps: ### Step 1: Calculate \( \tan 2\beta \) We use the formula for \( \tan 2\beta \): \[ \tan 2\beta = \frac{2 \tan \beta}{1 - \tan^2 \beta} \] Substituting \( \tan \beta = \frac{1}{3} \): \[ \tan 2\beta = \frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2} \] Calculating \( \tan^2 \beta \): \[ \tan^2 \beta = \left(\frac{1}{3}\right)^2 = \frac{1}{9} \] Thus: \[ 1 - \tan^2 \beta = 1 - \frac{1}{9} = \frac{8}{9} \] Now substituting back: \[ \tan 2\beta = \frac{\frac{2}{3}}{\frac{8}{9}} = \frac{2}{3} \cdot \frac{9}{8} = \frac{3}{4} \] ### Step 2: Relate \( \alpha \) and \( \beta \) We use the formula for \( \tan(\alpha + 2\beta) \): \[ \tan(\alpha + 2\beta) = \frac{\tan \alpha + \tan 2\beta}{1 - \tan \alpha \tan 2\beta} \] Substituting \( \tan \alpha = \frac{1}{7} \) and \( \tan 2\beta = \frac{3}{4} \): \[ \tan(\alpha + 2\beta) = \frac{\frac{1}{7} + \frac{3}{4}}{1 - \left(\frac{1}{7} \cdot \frac{3}{4}\right)} \] ### Step 3: Calculate the numerator Finding a common denominator for the numerator: \[ \frac{1}{7} + \frac{3}{4} = \frac{4}{28} + \frac{21}{28} = \frac{25}{28} \] ### Step 4: Calculate the denominator Calculating the denominator: \[ 1 - \left(\frac{1}{7} \cdot \frac{3}{4}\right) = 1 - \frac{3}{28} = \frac{28 - 3}{28} = \frac{25}{28} \] ### Step 5: Simplify \( \tan(\alpha + 2\beta) \) Now substituting back: \[ \tan(\alpha + 2\beta) = \frac{\frac{25}{28}}{\frac{25}{28}} = 1 \] ### Step 6: Find the angle Since \( \tan(\alpha + 2\beta) = 1 \), we have: \[ \alpha + 2\beta = \frac{\pi}{4} \] This implies: \[ \alpha = \frac{\pi}{4} - 2\beta \] ### Step 7: Find \( \cos 2\alpha \) Now, multiplying the equation by 2: \[ 2\alpha = \frac{\pi}{2} - 4\beta \] Using the cosine identity: \[ \cos 2\alpha = \cos\left(\frac{\pi}{2} - 4\beta\right) = \sin 4\beta \] ### Final Result Thus, we conclude: \[ \cos 2\alpha = \sin 4\beta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

tan alpha=(1)/(7),tan beta=(1)/(3), then cos2 alpha=

If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal to

If tan alpha=(1)/(7) and tan beta=(1)/(3) , then cos2 alpha is equal to

If tanalpha=(1)/(3)andtanbeta=(1)/(2), then: tan(alpha+beta)=

If tanalpha=(m)/(m+1)andtan beta=(1)/(2m+1) , then (alpha+beta)=?

if tan(alpha+beta)=(1)/(2) and tanalpha=(1)/(3), then tanbeta =______.

Given that tanalpha=m//(m+1),tanbeta=1//(2m+1) , then what is the value of alpha+beta ?

If tanalpha=(1+2^(-x))^(-1), tanbeta=(1+2^(x+1))^(-1) , then alpha+beta=

If sin alpha-sin beta=(1)/(3) and cos beta-cos alpha=(1)/(2) show that (cot(alpha+beta))/(2)=(2)/(3)