Home
Class 14
MATHS
If tanA=(1)/(2),tanB=(1)/(3), then cos2A...

If `tanA=(1)/(2),tanB=(1)/(3)`, then `cos2A=?`

A

sin B

B

sin 2B

C

sin 3B

D

cos 3B

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos 2A \) given that \( \tan A = \frac{1}{2} \) and \( \tan B = \frac{1}{3} \). ### Step-by-Step Solution: 1. **Use the formula for \( \cos 2A \)**: \[ \cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A} \] 2. **Substitute the value of \( \tan A \)**: Since \( \tan A = \frac{1}{2} \), we calculate \( \tan^2 A \): \[ \tan^2 A = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] Now substitute this into the formula: \[ \cos 2A = \frac{1 - \frac{1}{4}}{1 + \frac{1}{4}} \] 3. **Simplify the numerator and denominator**: - For the numerator: \[ 1 - \frac{1}{4} = \frac{4}{4} - \frac{1}{4} = \frac{3}{4} \] - For the denominator: \[ 1 + \frac{1}{4} = \frac{4}{4} + \frac{1}{4} = \frac{5}{4} \] 4. **Combine the results**: \[ \cos 2A = \frac{\frac{3}{4}}{\frac{5}{4}} = \frac{3}{5} \] Thus, the value of \( \cos 2A \) is \( \frac{3}{5} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If tanA=(1)/(2) and tanB=(1)/(3) , then tan(2A+B) is equal to

If tanA=1/7 and tanB=1/3 , prove that: cos2A= sin4B

If A and B are acute angles such that tanA=(1)/(3) , tanB=(1)/(2) and tan(A+B)=(tanA+tanB)/(1-tanAtanB) , Then find the value of A+B .

If tanA=(sqrt3-1)/(sqrt3+1),"then": cos A=

"If" tanA =(1-cosB)/(sinB), "then "tan2A =tanB

If tanA=(3)/(2) , then (1+cotA)/(1-cotA)=?

If tanA=m/(m-1) and tanB=1/(2m-1) , find the value of (tanA-B) .

If tanA=-1/2 and tanB=-1/3 , (where A, B gt 0) , then A+B can be

If cosA=(3)/(5) and sinB=(5)/(13) , find the value of (tanA+tanB)/(1-tanAtanB) :