Home
Class 14
MATHS
The value of cos12^(@)+cos84^(@)+cos156^...

The value of `cos12^(@)+cos84^(@)+cos156^(@)+cos132^(@)` is

A

`(1)/(2)`

B

1

C

`-(1)/(2)`

D

`(1)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos 12^\circ + \cos 84^\circ + \cos 156^\circ + \cos 132^\circ \), we can use the cosine addition formulas. Let's break it down step by step. ### Step 1: Pair the cosines We can pair the cosines to make the calculations easier: \[ \cos 12^\circ + \cos 132^\circ \quad \text{and} \quad \cos 84^\circ + \cos 156^\circ \] ### Step 2: Use the cosine addition formula The cosine addition formula states that: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] #### For \( \cos 12^\circ + \cos 132^\circ \): - Here, \( A = 12^\circ \) and \( B = 132^\circ \). - Calculate \( A + B = 12^\circ + 132^\circ = 144^\circ \) - Calculate \( A - B = 12^\circ - 132^\circ = -120^\circ \) Now applying the formula: \[ \cos 12^\circ + \cos 132^\circ = 2 \cos\left(\frac{144^\circ}{2}\right) \cos\left(\frac{-120^\circ}{2}\right) \] \[ = 2 \cos(72^\circ) \cos(-60^\circ) \] Since \( \cos(-\theta) = \cos(\theta) \): \[ = 2 \cos(72^\circ) \cos(60^\circ) \] We know that \( \cos(60^\circ) = \frac{1}{2} \): \[ = 2 \cos(72^\circ) \cdot \frac{1}{2} = \cos(72^\circ) \] #### For \( \cos 84^\circ + \cos 156^\circ \): - Here, \( A = 84^\circ \) and \( B = 156^\circ \). - Calculate \( A + B = 84^\circ + 156^\circ = 240^\circ \) - Calculate \( A - B = 84^\circ - 156^\circ = -72^\circ \) Now applying the formula: \[ \cos 84^\circ + \cos 156^\circ = 2 \cos\left(\frac{240^\circ}{2}\right) \cos\left(\frac{-72^\circ}{2}\right) \] \[ = 2 \cos(120^\circ) \cos(-36^\circ) \] Since \( \cos(120^\circ) = -\frac{1}{2} \): \[ = 2 \left(-\frac{1}{2}\right) \cos(36^\circ) = -\cos(36^\circ) \] ### Step 3: Combine the results Now we combine the results from the two pairs: \[ \cos 12^\circ + \cos 132^\circ + \cos 84^\circ + \cos 156^\circ = \cos(72^\circ) - \cos(36^\circ) \] ### Step 4: Use known values We know that: \[ \cos(72^\circ) = \sin(18^\circ) \quad \text{and} \quad \cos(36^\circ) = \sin(54^\circ) \] Thus, we can express: \[ \cos(72^\circ) - \cos(36^\circ) = \sin(18^\circ) - \sin(54^\circ) \] ### Final Result Using the sine subtraction formula: \[ \sin(18^\circ) - \sin(54^\circ) = -\sin(36^\circ) \] Thus, the final value is: \[ \cos 12^\circ + \cos 84^\circ + \cos 156^\circ + \cos 132^\circ = 0 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

The value of cos12^(0)+cos84^(@)+cos156^(@)+cos132^(0) is (1)/(2)1-(1)/(2)(1)/(8)

The value of cos12^(0)+cos84^(0)+cos156^(@)+cos132^(@)is

Find the value of cos12^(@)+cos84^(@)+cos156^(@)+cos132^(@)

Find the value of cos 12^(@)+cos 84^(@)+cos 156^(@)+cos 132^(@)

find the values of (1)cos12^(@)+cos84^(@)+cos156^(@)+cos132^(@)

The value of cos52^(@)+cos68^(@)+cos172^(@)

Find the value of cos12^(0)+cos84^(@)+cos156^(@)+cos132^(@)

The value of cos52^(@)+cos68^(@)+cos172^(@) is