Home
Class 14
MATHS
If A+C=B, then tan A tan B tan C = ?...

If `A+C=B`, then tan A tan B tan C = ?

A

`tanAtanB-tanC`

B

`tanB-tanC-tanA`

C

`tanA+tanB-tanC`

D

`-tanAtanB+tanC`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( A + C = B \) and we need to find the value of \( \tan A \tan B \tan C \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ A + C = B \] ### Step 2: Apply the tangent function Taking the tangent of both sides, we get: \[ \tan(A + C) = \tan B \] ### Step 3: Use the tangent addition formula Using the formula for the tangent of a sum, we have: \[ \tan(A + C) = \frac{\tan A + \tan C}{1 - \tan A \tan C} \] Thus, we can write: \[ \frac{\tan A + \tan C}{1 - \tan A \tan C} = \tan B \] ### Step 4: Rearranging the equation Now, we can rearrange this equation to isolate \( \tan A + \tan C \): \[ \tan A + \tan C = \tan B (1 - \tan A \tan C) \] Expanding the right side gives: \[ \tan A + \tan C = \tan B - \tan B \tan A \tan C \] ### Step 5: Rearranging terms Now, we can bring all terms involving \( \tan A \) and \( \tan C \) to one side: \[ \tan A + \tan C + \tan B \tan A \tan C = \tan B \] ### Step 6: Factor out \( \tan A \tan B \tan C \) Rearranging gives us: \[ \tan A \tan B \tan C = \tan B - \tan A - \tan C \] ### Step 7: Conclusion From the equation we derived, we can conclude that: \[ \tan A \tan B \tan C = \tan B - (\tan A + \tan C) \] Since \( A + C = B \), we can substitute: \[ \tan A \tan B \tan C = 0 \] Thus, the final answer is: \[ \tan A \tan B \tan C = 0 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

A+C=B rArr tan A tan B tan C=

If A, B, C are in AP and B = pi/4 , then tan A *tan B*tan C = _____.

If A+b+C=pi then tan A+tan B+tan Ctan Adot anB tan C

If cos2B=(cos(A+C))/(cos(A-C)) , then tan A, tan B, tan C are in

If A+B + C =180^(@), then tan A + tan B + tan C is equal to

Statement-1: In any DeltaABC if A is obtuse, then tanBtanC lt1 Statement-2: In any !ABC , we have tan A + tan B + tan C = tan A tan B tan C

If,A,B,C are angles of a triangle and if none of them is equal to (pi)/(2) ,then tan A+tan B+tan C is cot A cotB cot C tan A tan B tan C sin A sin B sin C cos A cos B cos C