Home
Class 14
MATHS
tanthetasin((pi)/(2)+theta)cos((pi)/(2)-...

`tanthetasin((pi)/(2)+theta)cos((pi)/(2)-theta)=?`

A

1

B

0

C

`(1)/(sqrt(2))`

D

`sin^(2)theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan \theta \sin\left(\frac{\pi}{2} + \theta\right) \cos\left(\frac{\pi}{2} - \theta\right) \), we can follow these steps: ### Step 1: Rewrite the trigonometric functions We know the following trigonometric identities: - \( \sin\left(\frac{\pi}{2} + \theta\right) = \cos \theta \) - \( \cos\left(\frac{\pi}{2} - \theta\right) = \sin \theta \) Using these identities, we can rewrite the expression: \[ \tan \theta \sin\left(\frac{\pi}{2} + \theta\right) \cos\left(\frac{\pi}{2} - \theta\right) = \tan \theta \cdot \cos \theta \cdot \sin \theta \] ### Step 2: Substitute \( \tan \theta \) Recall that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). We substitute this into the expression: \[ \tan \theta \cdot \cos \theta \cdot \sin \theta = \frac{\sin \theta}{\cos \theta} \cdot \cos \theta \cdot \sin \theta \] ### Step 3: Simplify the expression The \( \cos \theta \) in the numerator and denominator cancels out: \[ \frac{\sin \theta \cdot \cos \theta \cdot \sin \theta}{\cos \theta} = \sin^2 \theta \] ### Conclusion Thus, the final simplified expression is: \[ \tan \theta \sin\left(\frac{\pi}{2} + \theta\right) \cos\left(\frac{\pi}{2} - \theta\right) = \sin^2 \theta \] ### Final Answer \[ \sin^2 \theta \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If (3 pi)/(2)

Prove that: 2cos theta cos((pi)/(3)+theta)cos((pi)/(3)-theta)=cos3 theta

Find cos((pi)/(2)+theta)+cos((3 pi)/(2)+theta)+cos((5 pi)/(2)+theta)+cos((7 pi)/(2)+theta) upto 2021 terms

If tan theta=(3)/(4) and theta is not in first quadrant sin(sin((pi)/(2)+theta)-cot(pi-theta))/(tan((3 pi)/(2)-theta)-cos((3 pi)/(2)+theta))=

cos((3 pi)/(2)+theta)*cos(2 pi+theta)=

cos^2((pi)/(4)-theta)+cos^2((pi)/(4)+theta)=.....

Prove that: cos^(2)theta+cos^(2)((pi)/(3)+theta)+cos^(2)((pi)/(3)-theta)=(3)/(2)

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

Prove that (cos(pi+theta)cos(-theta))/(cos(pi-theta)cos((pi)/(2)+theta))=-cot theta

(sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2tan theta cot theta=-1 if theta in(0,(pi)/(2))(b)theta in((pi)/(2),pi)theta in(pi,(3 pi)/(2))(d)theta in((3 pi)/(2),2 pi)