Home
Class 14
MATHS
If cosalpha+cosbeta=0=sinalpha+sinbeta, ...

If `cosalpha+cosbeta=0=sinalpha+sinbeta`, then `cos2alpha+cos2beta=?`

A

`-2sin(alpha+beta)`

B

`2cos(alpha+beta)`

C

`2sin(alpha+beta)`

D

`-2cos(alpha+beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos \alpha + \cos \beta = 0 \) and \( \sin \alpha + \sin \beta = 0 \), we need to find \( \cos 2\alpha + \cos 2\beta \). ### Step-by-Step Solution: 1. **Given Equations**: We start with the equations: \[ \cos \alpha + \cos \beta = 0 \] \[ \sin \alpha + \sin \beta = 0 \] 2. **Rearranging the Equations**: From \( \cos \alpha + \cos \beta = 0 \), we can express \( \cos \beta \) as: \[ \cos \beta = -\cos \alpha \] From \( \sin \alpha + \sin \beta = 0 \), we can express \( \sin \beta \) as: \[ \sin \beta = -\sin \alpha \] 3. **Using the Pythagorean Identity**: We know that: \[ \cos^2 \alpha + \sin^2 \alpha = 1 \] Therefore, substituting \( \cos \beta \) and \( \sin \beta \): \[ \cos^2 \beta + \sin^2 \beta = \cos^2 \alpha + \sin^2 \alpha = 1 \] This confirms that \( \alpha \) and \( \beta \) are supplementary angles. 4. **Finding \( \cos 2\alpha + \cos 2\beta \)**: We can use the double angle formula: \[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta \] Thus, we can write: \[ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha \] \[ \cos 2\beta = \cos^2 \beta - \sin^2 \beta \] 5. **Substituting for \( \cos^2 \beta \) and \( \sin^2 \beta \)**: Since \( \cos \beta = -\cos \alpha \) and \( \sin \beta = -\sin \alpha \): \[ \cos^2 \beta = \cos^2 \alpha \] \[ \sin^2 \beta = \sin^2 \alpha \] 6. **Combining the Results**: Now we can combine: \[ \cos 2\alpha + \cos 2\beta = (\cos^2 \alpha - \sin^2 \alpha) + (\cos^2 \beta - \sin^2 \beta) \] \[ = (\cos^2 \alpha - \sin^2 \alpha) + (\cos^2 \alpha - \sin^2 \alpha) \] \[ = 2(\cos^2 \alpha - \sin^2 \alpha) \] 7. **Using the Cosine of Sum Formula**: We can express this as: \[ = 2 \cos(\alpha + \beta) \] Since \( \alpha + \beta = 180^\circ \) (or \( \pi \) radians), we have: \[ \cos(\alpha + \beta) = \cos 180^\circ = -1 \] Therefore: \[ \cos 2\alpha + \cos 2\beta = 2 \cdot (-1) = -2 \] ### Final Answer: \[ \cos 2\alpha + \cos 2\beta = -2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If cos alpha+cos beta=0=sin alpha+sinbeta, then cos2alpha+cos 2beta=

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

If cosalpha+cosbeta=a, sinalpha+sinbeta=b, then cos(alpha+beta) is equal to (A) (2ab)/(a^2+b^2) (B) (a^2+b^2)/(a^2-b^2) (C) (a^2-b^2)/(a^2+b^2) (D) (b^2-a^2)/(b^2+a^2)

If cos alpha+cos beta=0=sin alpha+sin beta. Prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If cos alpha+cos beta=0=sin alpha+sin beta, then prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If cos alpha+cos beta=0=sin alpha+sin beta, then prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. sin12^(@)sin24^(@)sin48^(@)sin84^(@)=?

    Text Solution

    |

  2. tan5xtan3xtan2x=?

    Text Solution

    |

  3. If cosalpha+cosbeta=0=sinalpha+sinbeta, then cos2alpha+cos2beta=?

    Text Solution

    |

  4. If A+B+C=180^(@), then (tanA+tanB+tanC)/(tanAtanBtanC)=?

    Text Solution

    |

  5. If cosA=acosB and sinA=bsinB, then (b^(2)-a^(2))sin^(2)B=?

    Text Solution

    |

  6. If A+B+C=pi, then cos2A+cos2B+cos2C=?

    Text Solution

    |

  7. If A, B, C are angles of a triangle, then sin^(2)A+sin^(2)B+sin^(2)C-2...

    Text Solution

    |

  8. If A+B+C=180^(@), then sin2A+sin2B+sin2C=?

    Text Solution

    |

  9. cos52^(@)+cos68^(@)+cos172^(@)=?

    Text Solution

    |

  10. If cos2B=(cos(A+C))/(cos(A-C)), then tan A, tan B, tan C are in

    Text Solution

    |

  11. The equation (a+b)^(2)=4ab sin^(2)theta is true if and only if

    Text Solution

    |

  12. If (sinA-sinC)/(cosC-cosA)=cotB, then A, B, C are in

    Text Solution

    |

  13. If bsinalpha=asin(alpha+2beta), then (a+b)/(a-b)=?

    Text Solution

    |

  14. tan10^(@)-tan50^(@)+tan70^(@)=?

    Text Solution

    |

  15. cos^(3)10^(@)+cos^(3)110^(@)+cos^(3)130^(@)=?

    Text Solution

    |

  16. For what value of alpha does the equation 4cosalpha+3cos2alpha-2sin3al...

    Text Solution

    |

  17. If (sinA+sinB+sinC)^(2)=sin^(2)A+sin^(2)B+sin^(2)C, then which one is ...

    Text Solution

    |

  18. A and B started a business after investing Rs. 12,000 and Rs. 14,400 r...

    Text Solution

    |

  19. If cos A = tan B, cos B = tan C and cos C = tan A then show that sin A...

    Text Solution

    |

  20. A & B invest Rs. 1,16,000 & 1,44,000 respectively. B invests for 6 mon...

    Text Solution

    |