Home
Class 14
MATHS
If bsinalpha=asin(alpha+2beta), then (a+...

If `bsinalpha=asin(alpha+2beta)`, then `(a+b)/(a-b)=?`

A

`(tanbeta)/(tan(alpha+beta))`

B

`(cotbeta)/(cot(alpha-beta))`

C

`(cotbeta)/(cot(alpha+beta))`

D

`(tanbeta)/(tan(alpha-beta))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( b \sin \alpha = a \sin(\alpha + 2\beta) \) and find the value of \( \frac{a+b}{a-b} \), we can follow these steps: ### Step 1: Rewrite the Given Equation We start with the equation: \[ b \sin \alpha = a \sin(\alpha + 2\beta) \] ### Step 2: Use the Sine Addition Formula We apply the sine addition formula: \[ \sin(\alpha + 2\beta) = \sin \alpha \cos 2\beta + \cos \alpha \sin 2\beta \] Substituting this into the equation gives: \[ b \sin \alpha = a (\sin \alpha \cos 2\beta + \cos \alpha \sin 2\beta) \] ### Step 3: Rearranging the Equation Rearranging the equation, we can factor out \( \sin \alpha \): \[ b \sin \alpha = a \sin \alpha \cos 2\beta + a \cos \alpha \sin 2\beta \] This can be rewritten as: \[ b \sin \alpha - a \sin \alpha \cos 2\beta = a \cos \alpha \sin 2\beta \] Factoring out \( \sin \alpha \) from the left side gives: \[ \sin \alpha (b - a \cos 2\beta) = a \cos \alpha \sin 2\beta \] ### Step 4: Divide Both Sides Assuming \( \sin \alpha \neq 0 \), we can divide both sides by \( \sin \alpha \): \[ b - a \cos 2\beta = a \frac{\cos \alpha \sin 2\beta}{\sin \alpha} \] This leads us to: \[ \frac{b - a \cos 2\beta}{a \frac{\cos \alpha \sin 2\beta}{\sin \alpha}} = 1 \] ### Step 5: Componendo and Dividendo Now, we apply the concept of componendo and dividendo: \[ \frac{\sin \alpha + \sin(\alpha + 2\beta)}{\sin \alpha - \sin(\alpha + 2\beta)} = \frac{a + b}{a - b} \] Using the sine addition formula again, we can simplify this expression. ### Step 6: Simplifying the Expression Using the sine addition and subtraction formulas: \[ \sin x + \sin y = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] \[ \sin x - \sin y = 2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) \] Applying these formulas, we can simplify the expression on the left side. ### Step 7: Final Expression After simplification, we find: \[ \frac{a+b}{a-b} = \frac{\sin(\alpha + \beta)}{\sin(\alpha - \beta)} \] ### Conclusion Thus, the final answer is: \[ \frac{a+b}{a-b} = \frac{\sin(\alpha + \beta)}{\sin(\alpha - \beta)} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If s in alpha+s in beta=asn cos alpha-cos beta=b then (tan(alpha-beta))/(2)=-(a)/(b) b.-(b)/(a)csqrt(a^(2)+b^(2))d .none of these

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to (a)-2sin(alpha+beta)(b)-2cos(alpha+beta)(c)2sin(alpha+beta)(d)2cos(alpha+beta)

If : sin (alpha + beta)=1 and sin (alpha-beta)=(1)/(2), "then" : tan (alpha+2beta)*tan(2alpha+beta)= A)-1 B)0 C)1 D)2

If tan alpha=(1-cos beta)/(sin beta), then a )tan3 alpha=tan2 beta(b)tan2 alpha=tan beta(c)tan2 beta=tan alpha(d) none of these

If cot(alpha+beta)=0, then sin(alpha+2 beta) can be (a)-sin alpha(b)sin beta(c)cos alpha(d)cos beta

tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to

tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)*cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to

If sin alpha+sin beta=a and cos alpha+cos beta=b then tan((alpha-beta)/(2)) is equal to

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/(2))=

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. The equation (a+b)^(2)=4ab sin^(2)theta is true if and only if

    Text Solution

    |

  2. If (sinA-sinC)/(cosC-cosA)=cotB, then A, B, C are in

    Text Solution

    |

  3. If bsinalpha=asin(alpha+2beta), then (a+b)/(a-b)=?

    Text Solution

    |

  4. tan10^(@)-tan50^(@)+tan70^(@)=?

    Text Solution

    |

  5. cos^(3)10^(@)+cos^(3)110^(@)+cos^(3)130^(@)=?

    Text Solution

    |

  6. For what value of alpha does the equation 4cosalpha+3cos2alpha-2sin3al...

    Text Solution

    |

  7. If (sinA+sinB+sinC)^(2)=sin^(2)A+sin^(2)B+sin^(2)C, then which one is ...

    Text Solution

    |

  8. A and B started a business after investing Rs. 12,000 and Rs. 14,400 r...

    Text Solution

    |

  9. If cos A = tan B, cos B = tan C and cos C = tan A then show that sin A...

    Text Solution

    |

  10. A & B invest Rs. 1,16,000 & 1,44,000 respectively. B invests for 6 mon...

    Text Solution

    |

  11. If acos^(3)alpha+3cosalphasin^(2)alpha=m and asin^(3)alpha+3cos^(2)alp...

    Text Solution

    |

  12. If y=acos^(2)x+2bsinxcosx+csin^(2)xandz=asin^(2)x-2bsinxcosx+c cos^(2)...

    Text Solution

    |

  13. If A+B+C=pi, then (cosA)/(sinBsinC)+(cosB)/(sinCsinA)+(cosC)/(sinAsi...

    Text Solution

    |

  14. If sinA, cosA and tanA are in G.P., then cos^(3)A+cos^(2)A=?

    Text Solution

    |

  15. If cos(theta-alpha),costheta,cos(theta+alpha) are in H.P., then costhe...

    Text Solution

    |

  16. If A+B=C and tanA=ktanB, and A-B=phi, then sinC=?

    Text Solution

    |

  17. If tanalpha,tanbeta are the roots of x^(2)+px+q=0(pneq) then tan(alpha...

    Text Solution

    |

  18. If A+B+C=(3pi)/(2), then cos2A+cos2B+cos2C=?

    Text Solution

    |

  19. If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC =...

    Text Solution

    |

  20. (sin(x+y))/(sin(x-y))=(a+b)/(a-b), then (tanx)/(tany)=?

    Text Solution

    |