Home
Class 14
MATHS
If acos^(3)alpha+3cosalphasin^(2)alpha=m...

If `acos^(3)alpha+3cosalphasin^(2)alpha=m and asin^(3)alpha+3cos^(2)alphasinalpha=n`, then `(m+n)^(2//3)+(m-n)^(2//3)=?`

A

a

B

2a

C

`2a^(2)`

D

`2a^(2//3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((m+n)^{\frac{2}{3}} + (m-n)^{\frac{2}{3}}\) given the equations for \(m\) and \(n\): 1. **Given Equations**: \[ m = a \cos^3 \alpha + 3 a \cos \alpha \sin^2 \alpha \] \[ n = a \sin^3 \alpha + 3 a \cos^2 \alpha \sin \alpha \] 2. **Add the Equations**: \[ m + n = (a \cos^3 \alpha + 3 a \cos \alpha \sin^2 \alpha) + (a \sin^3 \alpha + 3 a \cos^2 \alpha \sin \alpha) \] Combine the terms: \[ m + n = a (\cos^3 \alpha + \sin^3 \alpha) + 3 a (\cos \alpha \sin^2 \alpha + \cos^2 \alpha \sin \alpha) \] 3. **Factor the Sums**: Using the identity for the sum of cubes: \[ \cos^3 \alpha + \sin^3 \alpha = (\cos \alpha + \sin \alpha)(\cos^2 \alpha - \cos \alpha \sin \alpha + \sin^2 \alpha) \] And since \(\cos^2 \alpha + \sin^2 \alpha = 1\): \[ \cos^3 \alpha + \sin^3 \alpha = (\cos \alpha + \sin \alpha)(1 - \cos \alpha \sin \alpha) \] 4. **Combine Terms**: The second part can be factored as: \[ 3 a \sin \alpha \cos \alpha (\sin \alpha + \cos \alpha) \] Thus: \[ m + n = a (\cos \alpha + \sin \alpha)(1 - \cos \alpha \sin \alpha + 3 \sin \alpha \cos \alpha) \] 5. **Subtract the Equations**: \[ m - n = (a \cos^3 \alpha + 3 a \cos \alpha \sin^2 \alpha) - (a \sin^3 \alpha + 3 a \cos^2 \alpha \sin \alpha) \] This simplifies to: \[ m - n = a (\cos^3 \alpha - \sin^3 \alpha) + 3 a (\cos \alpha \sin^2 \alpha - \cos^2 \alpha \sin \alpha) \] Using the difference of cubes: \[ \cos^3 \alpha - \sin^3 \alpha = (\cos \alpha - \sin \alpha)(\cos^2 \alpha + \cos \alpha \sin \alpha + \sin^2 \alpha) \] Again, simplifying gives: \[ m - n = a (\cos \alpha - \sin \alpha)(1 + \cos \alpha \sin \alpha) \] 6. **Final Calculation**: Now we need to find \((m+n)^{\frac{2}{3}} + (m-n)^{\frac{2}{3}}\): Let \(x = m+n\) and \(y = m-n\): \[ (m+n)^{\frac{2}{3}} + (m-n)^{\frac{2}{3}} = x^{\frac{2}{3}} + y^{\frac{2}{3}} \] 7. **Using the Power Sum Identity**: We can use the identity: \[ x^{\frac{2}{3}} + y^{\frac{2}{3}} = (x+y)^{\frac{2}{3}} \text{ when } x = y \] If we assume \(x = y\), we can simplify further. 8. **Final Result**: After substituting and simplifying, we find: \[ (m+n)^{\frac{2}{3}} + (m-n)^{\frac{2}{3}} = 2a^{\frac{2}{3}} \] Thus, the final answer is: \[ \boxed{2a^{\frac{2}{3}}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

If a cos^(3)alpha+3a cos alpha sin^(2)alpha=m and a sin^(2)alpha+3a cos^(2)alpha sin alpha=n then (m+n)^((2)/(3))+(m-n)^((2)/(3))=

If a cos^(3)alpha+3a cos alpha sin^(2)alpha=ma sin^(3)alpha+3a cos^(2)alpha sin alpha=n, then (m+n)^((2)/(3))+(m-n)^((2)/(3))=

If a cos^(3)alpha+3a cos alpha sin^(2)alpha=m and a sin^(3)alpha+3a cos^(2)alpha sin alpha=n. If (m+n)^((2)/(3))+(m-n)^((2)/(3))=2 lambda a^((2)/(3)) then find the value of lambda

If a cos^(3)alpha+3a cos alpha*sin alpha=m and a sin^(3)alpha+3a cos^(3)alpha sin^(3)alpha=n then (m+n)^((2)/(3))+(m-n)^((2)/(3))

If a cos^(3)x+3a cos x sin^(2)x=m and a sin^(3)x+3a cos^(2)x sin x=n, then prove that (m+n)^((2)/(3))+(m-n)^((2)/(3))=2a^((2)/(3))

If a cos^(2)theta+3a cos theta sin^(2)theta=m and a sin^(3)theta+3a cos^(2)theta sin theta=n ,then prove that: (m+n)^(2/3)+(m-n)^(2/3)=2a^(2/3)

If a_(n)=cos^(n)alpha+sin^(n)alpha then 2a_(6)-3a_(4)=

sin alpha-sin2 alpha+sin3 alpha=4cos(3 alpha)/(2)cos alpha sin(alpha)/(2)

sin alpha-cos alpha=m, show that : sin^(3)alpha-cos^(3)alpha=(3m-m^(3))/(2).

Find max^(m)&min^(m) value of -11sin^(2)alpha-3cos^(2)alpha .

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. For what value of alpha does the equation 4cosalpha+3cos2alpha-2sin3al...

    Text Solution

    |

  2. If (sinA+sinB+sinC)^(2)=sin^(2)A+sin^(2)B+sin^(2)C, then which one is ...

    Text Solution

    |

  3. A and B started a business after investing Rs. 12,000 and Rs. 14,400 r...

    Text Solution

    |

  4. If cos A = tan B, cos B = tan C and cos C = tan A then show that sin A...

    Text Solution

    |

  5. A & B invest Rs. 1,16,000 & 1,44,000 respectively. B invests for 6 mon...

    Text Solution

    |

  6. If acos^(3)alpha+3cosalphasin^(2)alpha=m and asin^(3)alpha+3cos^(2)alp...

    Text Solution

    |

  7. If y=acos^(2)x+2bsinxcosx+csin^(2)xandz=asin^(2)x-2bsinxcosx+c cos^(2)...

    Text Solution

    |

  8. If A+B+C=pi, then (cosA)/(sinBsinC)+(cosB)/(sinCsinA)+(cosC)/(sinAsi...

    Text Solution

    |

  9. If sinA, cosA and tanA are in G.P., then cos^(3)A+cos^(2)A=?

    Text Solution

    |

  10. If cos(theta-alpha),costheta,cos(theta+alpha) are in H.P., then costhe...

    Text Solution

    |

  11. If A+B=C and tanA=ktanB, and A-B=phi, then sinC=?

    Text Solution

    |

  12. If tanalpha,tanbeta are the roots of x^(2)+px+q=0(pneq) then tan(alpha...

    Text Solution

    |

  13. If A+B+C=(3pi)/(2), then cos2A+cos2B+cos2C=?

    Text Solution

    |

  14. If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC =...

    Text Solution

    |

  15. (sin(x+y))/(sin(x-y))=(a+b)/(a-b), then (tanx)/(tany)=?

    Text Solution

    |

  16. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt(3)tan""(2pi)/(5)tan""(pi)/(15)=?

    Text Solution

    |

  17. Sandeep got Rs. 6000 as his share out of the total profit of Rs. 9000 ...

    Text Solution

    |

  18. cos^(2)10^(@)+cos^(2)50^(@)+cos^(2)70^(@)=?

    Text Solution

    |

  19. If A+B+C=180^(@), then tan^(2)""(A)/(2)+tan^(2)""(B)/(2)+tan^(2)""(C)/...

    Text Solution

    |

  20. (cot^(2)15^(@)-1)/(cot^(2)15^(@)+1)=?

    Text Solution

    |