Home
Class 14
MATHS
cos^(2)10^(@)+cos^(2)50^(@)+cos^(2)70^(@...

`cos^(2)10^(@)+cos^(2)50^(@)+cos^(2)70^(@)=?`

A

a) `(1)/(2)`

B

b) 1

C

c) `(3)/(2)`

D

d) 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos^2 10^\circ + \cos^2 50^\circ + \cos^2 70^\circ \), we can follow these steps: ### Step 1: Rewrite the angles We start by rewriting \( \cos^2 50^\circ \) and \( \cos^2 70^\circ \) in terms of \( \cos^2 10^\circ \): - \( \cos^2 50^\circ = \cos^2(60^\circ - 10^\circ) \) - \( \cos^2 70^\circ = \cos^2(60^\circ + 10^\circ) \) ### Step 2: Apply the cosine square identity Using the cosine of sum and difference identities: - \( \cos(a \pm b) = \cos a \cos b \mp \sin a \sin b \) We can express: - \( \cos^2(60^\circ - 10^\circ) = \left( \cos 60^\circ \cos 10^\circ + \sin 60^\circ \sin 10^\circ \right)^2 \) - \( \cos^2(60^\circ + 10^\circ) = \left( \cos 60^\circ \cos 10^\circ - \sin 60^\circ \sin 10^\circ \right)^2 \) ### Step 3: Substitute known values We know: - \( \cos 60^\circ = \frac{1}{2} \) - \( \sin 60^\circ = \frac{\sqrt{3}}{2} \) Substituting these values: 1. For \( \cos^2 50^\circ \): \[ \cos^2(60^\circ - 10^\circ) = \left( \frac{1}{2} \cos 10^\circ + \frac{\sqrt{3}}{2} \sin 10^\circ \right)^2 \] 2. For \( \cos^2 70^\circ \): \[ \cos^2(60^\circ + 10^\circ) = \left( \frac{1}{2} \cos 10^\circ - \frac{\sqrt{3}}{2} \sin 10^\circ \right)^2 \] ### Step 4: Expand the squares Now we expand both squares: 1. \( \cos^2(60^\circ - 10^\circ) \): \[ = \frac{1}{4} \cos^2 10^\circ + \frac{\sqrt{3}}{2} \cos 10^\circ \sin 10^\circ + \frac{3}{4} \sin^2 10^\circ \] 2. \( \cos^2(60^\circ + 10^\circ) \): \[ = \frac{1}{4} \cos^2 10^\circ - \frac{\sqrt{3}}{2} \cos 10^\circ \sin 10^\circ + \frac{3}{4} \sin^2 10^\circ \] ### Step 5: Combine all terms Now we combine \( \cos^2 10^\circ + \cos^2 50^\circ + \cos^2 70^\circ \): \[ \cos^2 10^\circ + \left( \frac{1}{4} \cos^2 10^\circ + \frac{\sqrt{3}}{2} \cos 10^\circ \sin 10^\circ + \frac{3}{4} \sin^2 10^\circ \right) + \left( \frac{1}{4} \cos^2 10^\circ - \frac{\sqrt{3}}{2} \cos 10^\circ \sin 10^\circ + \frac{3}{4} \sin^2 10^\circ \right) \] ### Step 6: Simplify the expression Combining like terms: - The \( \cos^2 10^\circ \) terms give \( \cos^2 10^\circ + \frac{1}{4} \cos^2 10^\circ + \frac{1}{4} \cos^2 10^\circ = \frac{3}{2} \cos^2 10^\circ \) - The \( \sin^2 10^\circ \) terms give \( \frac{3}{4} \sin^2 10^\circ + \frac{3}{4} \sin^2 10^\circ = \frac{3}{2} \sin^2 10^\circ \) - The mixed terms cancel out. Thus, we have: \[ \frac{3}{2} (\cos^2 10^\circ + \sin^2 10^\circ) = \frac{3}{2} \cdot 1 = \frac{3}{2} \] ### Final Answer The final answer is: \[ \cos^2 10^\circ + \cos^2 50^\circ + \cos^2 70^\circ = \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise EXERCISES (Multiple Choice Questions)|350 Videos
  • TIME, SPEED & DISTNACE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|108 Videos

Similar Questions

Explore conceptually related problems

cos^(2)10^(@)+cos^(2)50^(@)-cos10^(@)cos50^(@) is equal to

Express the rational number S=cos^(2)(10^(@))+cos^(2)(20^(@))+cos^(2)(30^(@))+...+cos^(2)(80^(@)) in lowest terms

The value of cos^(2)75^(@)+cos^(2)45^(@)+cos^(2)15^(@)-cos^(2)30^(@)-cos^(2)60^(@) is

The value of cos^(2)10^(0)-cos10^(0)cos50^(@)+cos^(2)50^(@) is equal to (4)/(3)(b)(1)/(3)(c)(3)/(4)(d)3

Value of cos^(2) 5^(@) + cos^(2) 10^(@) + cos^(2) 80^(@) + cos ^(2) 85^(@) is

cos^(2)5^(@)+cos^(2)10^(@)+cos^(2)15^(@)+..+cos^(2)355^(@)

(sin^(2) 20^(@) + sin^(2) 70^(@))/(cos^(2) 20^(@) + cos^(2) 70^(@)) + [ (sin (90^(@) - theta).sin theta)/(tan theta) + (cos (90^(@) - theta).cos theta)/(cot theta) ] .

cos^(2)5^(@) +cos^(2)10^(@) + cos^(2) 15^(@) +…..+cos^(2) 85^(@) + cos^(2) 90^(@) is equal to

Find the value of cos^(2)1^(@)+cos^(2)2^(@)+cos^(2)3^(@)+ -----+cos^(2)87^(@)+cos^(2)88^(@)+cos^(2)89^(@)+cos^(2)90^(@)

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-TRIGONOMETRY -EXERCISES (Multiple Choice Questions)
  1. For what value of alpha does the equation 4cosalpha+3cos2alpha-2sin3al...

    Text Solution

    |

  2. If (sinA+sinB+sinC)^(2)=sin^(2)A+sin^(2)B+sin^(2)C, then which one is ...

    Text Solution

    |

  3. A and B started a business after investing Rs. 12,000 and Rs. 14,400 r...

    Text Solution

    |

  4. If cos A = tan B, cos B = tan C and cos C = tan A then show that sin A...

    Text Solution

    |

  5. A & B invest Rs. 1,16,000 & 1,44,000 respectively. B invests for 6 mon...

    Text Solution

    |

  6. If acos^(3)alpha+3cosalphasin^(2)alpha=m and asin^(3)alpha+3cos^(2)alp...

    Text Solution

    |

  7. If y=acos^(2)x+2bsinxcosx+csin^(2)xandz=asin^(2)x-2bsinxcosx+c cos^(2)...

    Text Solution

    |

  8. If A+B+C=pi, then (cosA)/(sinBsinC)+(cosB)/(sinCsinA)+(cosC)/(sinAsi...

    Text Solution

    |

  9. If sinA, cosA and tanA are in G.P., then cos^(3)A+cos^(2)A=?

    Text Solution

    |

  10. If cos(theta-alpha),costheta,cos(theta+alpha) are in H.P., then costhe...

    Text Solution

    |

  11. If A+B=C and tanA=ktanB, and A-B=phi, then sinC=?

    Text Solution

    |

  12. If tanalpha,tanbeta are the roots of x^(2)+px+q=0(pneq) then tan(alpha...

    Text Solution

    |

  13. If A+B+C=(3pi)/(2), then cos2A+cos2B+cos2C=?

    Text Solution

    |

  14. If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC =...

    Text Solution

    |

  15. (sin(x+y))/(sin(x-y))=(a+b)/(a-b), then (tanx)/(tany)=?

    Text Solution

    |

  16. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt(3)tan""(2pi)/(5)tan""(pi)/(15)=?

    Text Solution

    |

  17. Sandeep got Rs. 6000 as his share out of the total profit of Rs. 9000 ...

    Text Solution

    |

  18. cos^(2)10^(@)+cos^(2)50^(@)+cos^(2)70^(@)=?

    Text Solution

    |

  19. If A+B+C=180^(@), then tan^(2)""(A)/(2)+tan^(2)""(B)/(2)+tan^(2)""(C)/...

    Text Solution

    |

  20. (cot^(2)15^(@)-1)/(cot^(2)15^(@)+1)=?

    Text Solution

    |