To solve the problem of finding the ratio \( a : c \) given \( a : b = 5 : 6 \) and \( b : c = 12 : 25 \), we can follow these steps:
### Step 1: Write the Ratios as Fractions
From the given ratios, we can express them as fractions:
- \( \frac{a}{b} = \frac{5}{6} \) (Equation 1)
- \( \frac{b}{c} = \frac{12}{25} \) (Equation 2)
### Step 2: Multiply the Two Ratios
To find \( \frac{a}{c} \), we can multiply the two fractions:
\[
\frac{a}{b} \times \frac{b}{c} = \frac{5}{6} \times \frac{12}{25}
\]
### Step 3: Cancel Out \( b \)
When we multiply these fractions, the \( b \) in the numerator and denominator cancels out:
\[
\frac{a}{c} = \frac{5 \times 12}{6 \times 25}
\]
### Step 4: Simplify the Right Side
Now, we simplify the right side:
- Calculate the numerator: \( 5 \times 12 = 60 \)
- Calculate the denominator: \( 6 \times 25 = 150 \)
Thus, we have:
\[
\frac{a}{c} = \frac{60}{150}
\]
### Step 5: Reduce the Fraction
Now we can simplify \( \frac{60}{150} \):
- Both 60 and 150 can be divided by 30:
\[
\frac{60 \div 30}{150 \div 30} = \frac{2}{5}
\]
### Step 6: Write the Final Ratio
Thus, the ratio \( a : c \) is:
\[
a : c = 2 : 5
\]
### Final Answer
The final answer is \( a : c = 2 : 5 \).
---
Topper's Solved these Questions
RATIO AND PROPORTION
ICSE|Exercise Exercise 7 A |38 Videos
RATIO AND PROPORTION
ICSE|Exercise Exercise 7 B|38 Videos
PROPERTIES OF TRIANGLES
ICSE|Exercise Exercise 18B|10 Videos
RATIONAL NUMBERS
ICSE|Exercise REVISION EXERCISE (FILL IN THE BOXES).|4 Videos
Similar Questions
Explore conceptually related problems
If a : b = 5 : 6 and b : c = 2 . 8 : 3.5 , find a : c
If a : b = 3 : 5 and b : c = 4 : 7 , find a : b : c
(a) If A : B = 3 : 4 and B : C = 6 : 7 , find : (i) A : B : C (ii) A : C (b) If A : B = 2 : 5 and A : C = 3 : 4 , find : A : B : C .
(i) If 3A = 4B = 6C , find : A : B : C . (ii) If 2a = 3b and 4b = 5c , find: a : c .
If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : 3y - 2z - 5x
In a A B C , A D is the bisector of /_A , meeting side B C at D . If A D=5. 6 c m , B C=6c m and B D=3. 2 c m , find A C . (ii) If A B=10 c m , A C=6c m and B C=12 c m , find B D and D C .
If a:b=3:5 and b:c=6:7 ,find a:b:c
If a+b+c=6 and a b+b c+c a=11 , find the value of a^3+b^3+c^3-3a b c
In Figure, /_\A C B ~ /_\A P Q . If B C=8c m , P Q=4c m , B A=6. 5 c m and A P=2. 8 c m , find C A and A Q .