Home
Class 7
MATHS
Find the value of x when 3 (1)/(2) : x :...

Find the value of x when `3 (1)/(2) : x : : 2 (1)/(2) : 4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) in the proportion \( 3 \frac{1}{2} : x :: 2 \frac{1}{2} : 4 \). ### Step-by-Step Solution: 1. **Convert Mixed Numbers to Improper Fractions:** - Convert \( 3 \frac{1}{2} \) to an improper fraction: \[ 3 \frac{1}{2} = \frac{3 \times 2 + 1}{2} = \frac{6 + 1}{2} = \frac{7}{2} \] - Convert \( 2 \frac{1}{2} \) to an improper fraction: \[ 2 \frac{1}{2} = \frac{2 \times 2 + 1}{2} = \frac{4 + 1}{2} = \frac{5}{2} \] Now we can rewrite the proportion: \[ \frac{7}{2} : x :: \frac{5}{2} : 4 \] 2. **Set Up the Proportion:** - We can express the proportion as: \[ \frac{7}{2} : x = \frac{5}{2} : 4 \] - This can be written as: \[ \frac{7/2}{x} = \frac{5/2}{4} \] 3. **Cross Multiply:** - Using the property of proportions, we can cross multiply: \[ 7 \cdot 4 = x \cdot 5 \] - This simplifies to: \[ 28 = 5x \] 4. **Solve for \( x \):** - Now, divide both sides by 5: \[ x = \frac{28}{5} \] 5. **Convert to Mixed Number (if needed):** - To convert \( \frac{28}{5} \) to a mixed number: \[ 28 \div 5 = 5 \quad \text{(remainder 3)} \] - So, \( \frac{28}{5} = 5 \frac{3}{5} \). ### Final Answer: Thus, the value of \( x \) is \( 5 \frac{3}{5} \). ---
Promotional Banner

Topper's Solved these Questions

  • RATIO AND PROPORTION

    ICSE|Exercise Exercise 7 A |38 Videos
  • RATIO AND PROPORTION

    ICSE|Exercise Exercise 7 B|38 Videos
  • PROPERTIES OF TRIANGLES

    ICSE|Exercise Exercise 18B|10 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise REVISION EXERCISE (FILL IN THE BOXES).|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of 3(x^2-2)+4x-8 when x=-2

Find the value of k, if (k)/(x^(2)-4) = (1)/(x-2)-(1)/(x+2)

Find the value of ∫1/ 2x − 2/ x + 3/ √x dx'

Find the value of x such that [(1,x,1)][(1, 3, 2),( 2, 5, 1), (15, 3, 2)][(1),( 2),(x)]=0

Find the values of x if the points (2x, 2x), (3, 2x + 1) and (1, 0) are collinear.

If x+1/x=sqrt(5) , find the values of x^2+1/(x^2) and x^4+1/(x^4)

Draw the graph of the equation x+2y =4, use graph to find : (a) X_(1) , the value of x when y =4 (b) Y_(1) the value of y when x= -2

Find the value of x which satisfy equation 2 tan^(-1) 2x = sin^(-1).(4x)/(1 + 4x^(2))

find the value of x for which f(x) = ((2x-1)(x-1)^(2)(x-2)^(2))/((x-4)^(2))ge 0.

Find the value of k, if (3x-4)/((x-3)(x+k))=(1)/(x-3)+(2)/(x+k)