Find the value of x when `3 (1)/(2) : x : : 2 (1)/(2) : 4`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the value of \( x \) in the proportion \( 3 \frac{1}{2} : x :: 2 \frac{1}{2} : 4 \).
### Step-by-Step Solution:
1. **Convert Mixed Numbers to Improper Fractions:**
- Convert \( 3 \frac{1}{2} \) to an improper fraction:
\[
3 \frac{1}{2} = \frac{3 \times 2 + 1}{2} = \frac{6 + 1}{2} = \frac{7}{2}
\]
- Convert \( 2 \frac{1}{2} \) to an improper fraction:
\[
2 \frac{1}{2} = \frac{2 \times 2 + 1}{2} = \frac{4 + 1}{2} = \frac{5}{2}
\]
Now we can rewrite the proportion:
\[
\frac{7}{2} : x :: \frac{5}{2} : 4
\]
2. **Set Up the Proportion:**
- We can express the proportion as:
\[
\frac{7}{2} : x = \frac{5}{2} : 4
\]
- This can be written as:
\[
\frac{7/2}{x} = \frac{5/2}{4}
\]
3. **Cross Multiply:**
- Using the property of proportions, we can cross multiply:
\[
7 \cdot 4 = x \cdot 5
\]
- This simplifies to:
\[
28 = 5x
\]
4. **Solve for \( x \):**
- Now, divide both sides by 5:
\[
x = \frac{28}{5}
\]
5. **Convert to Mixed Number (if needed):**
- To convert \( \frac{28}{5} \) to a mixed number:
\[
28 \div 5 = 5 \quad \text{(remainder 3)}
\]
- So, \( \frac{28}{5} = 5 \frac{3}{5} \).
### Final Answer:
Thus, the value of \( x \) is \( 5 \frac{3}{5} \).
---
Topper's Solved these Questions
RATIO AND PROPORTION
ICSE|Exercise Exercise 7 A |38 Videos
RATIO AND PROPORTION
ICSE|Exercise Exercise 7 B|38 Videos
PROPERTIES OF TRIANGLES
ICSE|Exercise Exercise 18B|10 Videos
RATIONAL NUMBERS
ICSE|Exercise REVISION EXERCISE (FILL IN THE BOXES).|4 Videos
Similar Questions
Explore conceptually related problems
Find the value of 3(x^2-2)+4x-8 when x=-2
Find the value of k, if (k)/(x^(2)-4) = (1)/(x-2)-(1)/(x+2)
Find the value of ∫1/ 2x − 2/ x + 3/ √x dx'
Find the value of x such that [(1,x,1)][(1, 3, 2),( 2, 5, 1), (15, 3, 2)][(1),( 2),(x)]=0
Find the values of x if the points (2x, 2x), (3, 2x + 1) and (1, 0) are collinear.
If x+1/x=sqrt(5) , find the values of x^2+1/(x^2) and x^4+1/(x^4)
Draw the graph of the equation x+2y =4, use graph to find : (a) X_(1) , the value of x when y =4 (b) Y_(1) the value of y when x= -2
Find the value of x which satisfy equation 2 tan^(-1) 2x = sin^(-1).(4x)/(1 + 4x^(2))
find the value of x for which f(x) = ((2x-1)(x-1)^(2)(x-2)^(2))/((x-4)^(2))ge 0.
Find the value of k, if (3x-4)/((x-3)(x+k))=(1)/(x-3)+(2)/(x+k)