Home
Class 6
MATHS
Evaluate the 3.6xx1.4xx0.7...

Evaluate the
`3.6xx1.4xx0.7`

A

3.528

B

3.529

C

4.528

D

3.628

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 3.6 \times 1.4 \times 0.7 \), we can follow these steps: ### Step 1: Convert decimals to fractions We can convert each decimal into a fraction to make multiplication easier: - \( 3.6 = \frac{36}{10} \) - \( 1.4 = \frac{14}{10} \) - \( 0.7 = \frac{7}{10} \) ### Step 2: Multiply the fractions Now we can multiply these fractions together: \[ 3.6 \times 1.4 \times 0.7 = \frac{36}{10} \times \frac{14}{10} \times \frac{7}{10} \] This can be simplified to: \[ \frac{36 \times 14 \times 7}{10 \times 10 \times 10} = \frac{36 \times 14 \times 7}{1000} \] ### Step 3: Calculate \( 14 \times 7 \) First, we calculate \( 14 \times 7 \): \[ 14 \times 7 = 98 \] Now we can substitute this back into our expression: \[ \frac{36 \times 98}{1000} \] ### Step 4: Calculate \( 36 \times 98 \) Next, we calculate \( 36 \times 98 \): \[ 36 \times 98 = 3528 \] So now we have: \[ \frac{3528}{1000} \] ### Step 5: Place the decimal To convert \( \frac{3528}{1000} \) into decimal form, we move the decimal point three places to the left (since the denominator is 1000): \[ 3528 \div 1000 = 3.528 \] ### Final Answer Thus, the final answer is: \[ \boxed{3.528} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the 3.7xx4.5

Evaluate the 1.4xx2.3xx0.02

Evaluate the 1.7xx0.13

Evaluate : 1.2 xx 2.3 xx 0.4

Evaluate: (0.6 xx 0.6 xx 0.6- 0.3 xx 0.3 xx 0.3)/(0.6 xx 0.6 + 0.6 xx 0.3 + 0.3 xx 0.3) , using suitable identity

Evaluate: 7.6 xx 15

Evaluate the following : 7xx4xx(-6)xx8

Find the product : 0.6xx1.5xx0.7

Evaluate 3xx4xx7xx2

Evaluate : a. 3^(2)xx10^(3) b. (-1)^(19) c. 0xx15^(5) d. ((2)/(5))^(3) e. 3^(2)xx3^(5) f. (-4)^(10)xx4^(100) g. 6^(10-:6^(5) h. (-2^(5))^(2) i. 7^(7)-:7^(5) j. 10^(5)-:10^(5) k. 11^(0)xx(-5)^(0)xx3^(0) l. (100^(0)+50^(0))xx(-25)^(0)