Home
Class 6
MATHS
Find dy/dx if 3x-2y=tanx...

Find `dy/dx if 3x-2y=tanx`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) for the equation \( 3x - 2y = \tan x \), we will differentiate both sides of the equation with respect to \( x \). Here are the steps: ### Step-by-Step Solution: 1. **Start with the given equation:** \[ 3x - 2y = \tan x \] 2. **Differentiate both sides with respect to \( x \):** - The derivative of \( 3x \) is \( 3 \). - The derivative of \( -2y \) is \( -2 \frac{dy}{dx} \) (using the chain rule). - The derivative of \( \tan x \) is \( \sec^2 x \). Thus, differentiating gives us: \[ \frac{d}{dx}(3x) - \frac{d}{dx}(2y) = \frac{d}{dx}(\tan x) \] Which simplifies to: \[ 3 - 2 \frac{dy}{dx} = \sec^2 x \] 3. **Rearrange the equation to solve for \( \frac{dy}{dx} \):** \[ -2 \frac{dy}{dx} = \sec^2 x - 3 \] Now, divide both sides by -2: \[ \frac{dy}{dx} = \frac{3 - \sec^2 x}{2} \] ### Final Result: \[ \frac{dy}{dx} = \frac{3 - \sec^2 x}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx if 3x-4y=tanx

Find dy/dx if x-2y=0

Find dy/dx if 2x-3y=tanx

Find dy/dx if x^2+xy=tanx

Find dy/dx if x+2y=3

Find dy/dx if 3x=y^5

Find dy/dx if y^3=x

Find dy/dx if 3x-y=siny

Find dy/dx if x^2y-2y=x

Find dy/dx if x-2y=siny